Neural Comput. 2011 Jan;23(1):215-50. doi: 10.1162/NECO_a_00063. Epub 2010 Oct 21.
Extracellular chronic recordings have been used as important evidence in neuroscientific studies to unveil the fundamental neural network mechanisms in the brain. Spike detection is the first step in the analysis of recorded neural waveforms to decipher useful information and provide useful signals for brain-machine interface applications. The process of spike detection is to extract action potentials from the recordings, which are often compounded with noise from different sources. This study proposes a new detection algorithm that leverages a technique from wavelet-based image edge detection. It utilizes the correlation between wavelet coefficients at different sampling scales to create a robust spike detector. The algorithm has one tuning parameter, which potentially reduces the subjectivity of detection results. Both artificial benchmark data sets and real neural recordings are used to evaluate the detection performance of the proposed algorithm. Compared with other detection algorithms, the proposed method has a comparable or better detection performance. In this letter, we also demonstrate its potential for real-time implementation.
细胞外慢性记录已被广泛应用于神经科学研究中,以揭示大脑中基本的神经网络机制。在分析记录的神经波形以解译有用信息并为脑机接口应用提供有用信号的过程中,尖峰检测是第一步。尖峰检测的过程是从记录中提取动作电位,而这些动作电位通常与来自不同来源的噪声混合在一起。本研究提出了一种新的检测算法,该算法利用了基于小波的图像边缘检测技术。它利用了不同采样尺度下的小波系数之间的相关性,从而创建了一个稳健的尖峰检测器。该算法有一个可调参数,这可能减少检测结果的主观性。人工基准数据集和真实的神经记录都被用于评估所提出算法的检测性能。与其他检测算法相比,所提出的方法具有可比或更好的检测性能。在这封信中,我们还展示了其在实时实现方面的潜力。