Paulus M, Gay-Balmaz P, Martin OJ
Electromagnetic Fields and Microwave Electronics Laboratory, Swiss Federal Institute of Technology, ETH-Zentrum ETZ, CH-8092 Zurich, Switzerland and IBM Research Division, Zurich Research Laboratory, CH-8803 Ruschlikon, Switzerland.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5797-807. doi: 10.1103/physreve.62.5797.
We present a technique for the computation of the Green's tensor in three-dimensional stratified media composed of an arbitrary number of layers with different permittivities and permeabilities (including metals with a complex permittivity). The practical implementation of this technique is discussed in detail. In particular, we show how to efficiently handle the singularities occurring in Sommerfeld integrals, by deforming the integration path in the complex plane. Examples assess the accuracy of this approach and illustrate the physical properties of the Green's tensor, which represents the field radiated by three orthogonal dipoles embedded in the multilayered medium.
我们提出了一种用于计算三维分层介质中格林张量的技术,该介质由任意数量具有不同介电常数和磁导率的层组成(包括具有复介电常数的金属)。详细讨论了该技术的实际实现。特别是,我们展示了如何通过在复平面中变形积分路径来有效处理索末菲积分中出现的奇点。示例评估了这种方法的准确性,并说明了格林张量的物理性质,格林张量表示嵌入多层介质中的三个正交偶极子辐射的场。