Saison-Francioso Ophélie, Lévêque Gaëtan, Akjouj Abdellatif, Pennec Yan
UMR CNRS 8520 - Cité Scientifique, Institut d'Électronique, de Microélectronique et de Nanotechnologie, Avenue Poincaré, CS 60069, 59652 Villeneuve D'Ascq Cedex, France.
ACS Omega. 2023 Jun 8;8(24):21493-21505. doi: 10.1021/acsomega.3c00342. eCollection 2023 Jun 20.
We theoretically study random arrangements of cylindrical gold nanoparticles (NPs) deposited on a dielectric/gold substrate. We use two methods, namely the Finite Element Method (FEM) and the Coupled Dipole Approximation (CDA) method. The FEM is increasingly used to analyze the optical properties of NPs, but calculations for arrangements containing a large number of NPs have a high computational cost. On the contrary, the CDA has the advantage to drastically reduce the computation time and the memory demand compared to the FEM. Nevertheless, as the CDA involves modeling each NP as a single electric dipole through the polarizability tensor of a spheroidal-shaped NP, it may be an insufficiently accurate method. Therefore, the main purpose of this article is to verify the validity of using the CDA in order to analyze such a kind of nanosystems. Finally, we capitalize on this methodology to draw some tendencies between statistics of NPs' distributions and the plasmonic properties.
我们从理论上研究了沉积在电介质/金基底上的圆柱形金纳米颗粒(NP)的随机排列。我们使用了两种方法,即有限元法(FEM)和耦合偶极近似(CDA)法。有限元法越来越多地用于分析纳米颗粒的光学性质,但对于包含大量纳米颗粒的排列进行计算时,计算成本很高。相反,与有限元法相比,耦合偶极近似法具有显著减少计算时间和内存需求的优势。然而,由于耦合偶极近似法通过将每个纳米颗粒建模为一个通过椭球形纳米颗粒的极化率张量的单个电偶极,它可能是一种不够精确的方法。因此,本文的主要目的是验证使用耦合偶极近似法来分析此类纳米系统的有效性。最后,我们利用这种方法得出纳米颗粒分布统计与等离子体特性之间的一些趋势。