Suppr超能文献

从莱茵衣藻适应低二氧化碳和高二氧化碳的细胞中生成表达序列标签。

Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii.

作者信息

Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K, Nakamura Y, Tabata S

机构信息

Kazusa DNA Research Institute, Chiba, Japan.

出版信息

DNA Res. 2000 Oct 31;7(5):305-7. doi: 10.1093/dnares/7.5.305.

Abstract

To characterize genes whose expression is induced in carbon-stress conditions, 12,969 and 13,450 5'-end expressed sequence tags (ESTs) were generated from cells grown in low-CO2 and high-CO2 conditions of the unicellular green alga, Chlamydomonas reinhardtii. These ESTs were clustered into 4436 and 3566 non-redundant EST groups, respectively. Comparison of their sequences with those of 3433 non-redundant ESTs previously generated from the cells under the standard growth condition indicated that 2665 and 1879 EST groups occurred only in the low-CO2 and high-CO2 populations, respectively. It was also noted that 96.2% and 96.0% of the cDNA species respectively obtained from the low-CO2 and high-CO2 conditions had no similar EST sequence deposited in the public databases. The EST species identified only in the low-CO2 treated cells included genes previously reported to be expressed specifically in low-CO2 acclimatized cells, suggesting that the ESTs generated in this study will be a useful source for analysis of genes related to carbon-stress acclimatization. The sequence information and search results of each clone will appear at the web site: http://www.kazusa.or.jp/en/plant/chlamy/EST/.

摘要

为了鉴定在碳胁迫条件下表达被诱导的基因,从单细胞绿藻莱茵衣藻在低二氧化碳和高二氧化碳条件下生长的细胞中分别生成了12,969个和13,450个5'端表达序列标签(EST)。这些EST分别被聚类为4436个和3566个非冗余EST组。将它们的序列与先前在标准生长条件下从细胞中生成的3433个非冗余EST的序列进行比较,结果表明分别有2665个和1879个EST组仅出现在低二氧化碳和高二氧化碳群体中。还注意到,分别从低二氧化碳和高二氧化碳条件下获得的cDNA物种中,有96.2%和96.0%在公共数据库中没有相似的EST序列。仅在低二氧化碳处理细胞中鉴定出的EST物种包括先前报道在低二氧化碳适应细胞中特异性表达的基因,这表明本研究中生成的EST将是分析与碳胁迫适应相关基因的有用资源。每个克隆的序列信息和搜索结果将出现在网站:http://www.kazusa.or.jp/en/plant/chlamy/EST/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验