Lin Rizhong, Kebiri Hamza, Gholipour Ali, Chen Yufei, Thiran Jean-Philippe, Karimi Davood, Cuadra Meritxell Bach
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
ArXiv. 2024 Sep 2:arXiv:2409.01195v1.
Diffusion Magnetic Resonance Imaging (dMRI) is a noninvasive method for depicting brain microstructure . Fiber orientation distributions (FODs) are mathematical representations extensively used to map white matter fiber configurations. Recently, FOD estimation with deep neural networks has seen growing success, in particular, those of neonates estimated with fewer diffusion measurements. These methods are mostly trained on target FODs reconstructed with (MSMT-CSD), which might not be the ideal ground truth for developing brains. Here, we investigate this hypothesis by training a state-of-the-art model based on the U-Net architecture on both MSMT-CSD and (SS3T-CSD). Our results suggest that SS3T-CSD might be more suited for neonatal brains, given that the ratio between single and multiple fiber-estimated voxels with SS3T-CSD is more realistic compared to MSMT-CSD. Additionally, increasing the number of input gradient directions significantly improves performance with SS3T-CSD over MSMT-CSD. Finally, in an age domain-shift setting, SS3T-CSD maintains robust performance across age groups, indicating its potential for more accurate neonatal brain imaging.
扩散磁共振成像(dMRI)是一种用于描绘脑微观结构的非侵入性方法。纤维方向分布(FODs)是广泛用于绘制白质纤维结构的数学表示。最近,使用深度神经网络进行FOD估计已取得越来越大的成功,特别是那些用较少扩散测量估计的新生儿FOD。这些方法大多是在使用多组织多峰分解交叉谱密度估计(MSMT-CSD)重建的目标FOD上进行训练的,这对于发育中的大脑可能不是理想的真实情况。在这里,我们通过在MSMT-CSD和单样本三组织三峰分解交叉谱密度估计(SS3T-CSD)上训练基于U-Net架构的先进模型来研究这一假设。我们的结果表明,SS3T-CSD可能更适合新生儿大脑,因为与MSMT-CSD相比,SS3T-CSD的单纤维和多纤维估计体素之间的比率更现实。此外,增加输入梯度方向的数量显著提高了SS3T-CSD相对于MSMT-CSD的性能。最后,在年龄域转移设置中,SS3T-CSD在各年龄组中保持稳健性能,表明其在更准确的新生儿脑成像方面的潜力。