Santini C L, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu L F
Laboratoire de Chimie Bactérienne, UPR9043, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cedex 20, France.
J Biol Chem. 2001 Mar 16;276(11):8159-64. doi: 10.1074/jbc.C000833200. Epub 2000 Nov 30.
The bacterial twin arginine translocation (Tat) pathway is capable of exporting cofactor-containing enzymes into the periplasm. To assess the capacity of the Tat pathway to export heterologous proteins and to gain information about the property of the periplasm, we fused the twin arginine signal peptide of the trimethylamine N-oxide reductase to the jellyfish green fluorescent protein (GFP). Unlike the Sec pathway, the Tat system successfully exported correctly folded GFP into the periplasm of Escherichia coli. Interestingly, GFP appeared as a halo in most cells and occasionally showed a polar localization in wild type strains. When subjected to a mild osmotic up-shock, GFP relocalized very quickly at the two poles of the cells. The conversion from the halo structure to a periplasmic gathering at particular locations was also observed with spherical cells of the DeltarodA-pbpA mutant or of the wild type strain treated with lysozyme. Therefore, the periplasm is not a uniform compartment and the polarization of GFP is unlikely to be caused by simple invagination of the cytoplasmic membrane at the poles. Moreover, the polar gathering of GFP is reversible; the reversion was accelerated by glucose and inhibited by azide and carbonyl cyanide m-chlorophenylhydrazone, indicating an active adaptation of the bacteria to the osmolarity in the medium. These results strongly suggest a relocalization of periplasmic substances in response to environmental changes. The polar area might be the preferential zone where bacteria sense the change in the environment.
细菌双精氨酸转运(Tat)途径能够将含辅因子的酶输出到周质中。为了评估Tat途径输出异源蛋白的能力并获取有关周质性质的信息,我们将三甲胺N-氧化物还原酶的双精氨酸信号肽与水母绿色荧光蛋白(GFP)融合。与Sec途径不同,Tat系统成功地将正确折叠的GFP输出到大肠杆菌的周质中。有趣的是,GFP在大多数细胞中呈现为光晕,偶尔在野生型菌株中显示出极性定位。当受到轻度渗透压升高冲击时,GFP会非常迅速地重新定位到细胞的两极。在用溶菌酶处理的DeltarodA-pbpA突变体或野生型菌株的球形细胞中也观察到了从光晕结构到特定位置周质聚集的转变。因此,周质不是一个均匀的区室,GFP的极化不太可能是由两极处细胞质膜的简单内陷引起的。此外,GFP的极性聚集是可逆的;葡萄糖会加速这种逆转,而叠氮化物和羰基氰化物间氯苯腙会抑制这种逆转,这表明细菌对培养基渗透压有积极的适应性。这些结果强烈表明周质物质会响应环境变化而重新定位。极性区域可能是细菌感知环境变化的优先区域。