Suppr超能文献

细菌活体解剖:荧光成像技术如何揭示细菌的内部运作。

Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.

机构信息

KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium.

KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium

出版信息

Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.

Abstract

The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.

摘要

在过去的 30 年中,基于荧光的成像技术的兴起提高了研究人员以更高的时空分辨率仔细研究活细胞生物学的能力。在微生物学中,这些实时活体解剖从“酶水溶液袋”的观点出发,彻底改变了人们对细菌细胞的看法,转而认为这些生物与真核生物一样复杂。利用(延时)荧光显微镜的巨大潜力和不断扩展的相应探针库,在揭示蛋白质定位和实时监测基因表达方面取得了最初的突破。然而,后来人们清楚地认识到,这项技术的潜力远不止于此,为将研究重点从观察单个细菌细胞或细菌群体中的事件转移到在细胞内和细胞间水平获得更全面的图景铺平了道路。在这篇综述中,我们概述了基于荧光的细菌活体解剖的最新技术,并提供了一些重要案例研究的概述,以说明如何使用或组合不同的策略来获取有关细胞生理学的详细信息。因此,本文由两部分组成(但相互关联),可以单独阅读和查阅。第一部分侧重于荧光探针库,并提供了使用这些工具进行显微镜检查的现代方法的视角。综述的第二部分将读者带入细菌细胞的内部,从细胞质到外壳,描述了突出细胞内结构特征和整体动态的策略和方法。

相似文献

1
Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.
Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.
2
Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics.
Nat Rev Microbiol. 2015 Dec;13(12):761-75. doi: 10.1038/nrmicro3567.
4
5
Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy.
Biophys J. 2015 Jun 16;108(12):2807-15. doi: 10.1016/j.bpj.2015.05.013.
6
It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms.
Future Microbiol. 2017 Sep;12:987-999. doi: 10.2217/fmb-2017-0053. Epub 2017 Jul 26.
7
A new organic molecular probe as a powerful tool for fluorescence imaging and biological study of lipid droplets.
Theranostics. 2023 Jan 1;13(1):95-105. doi: 10.7150/thno.79052. eCollection 2023.
8
Quantitative imaging and spectroscopic technologies for microbiology.
FEMS Microbiol Lett. 2018 May 1;365(9). doi: 10.1093/femsle/fny075.
9
Probes for intracellular RNA imaging in live cells.
Methods Enzymol. 2012;505:383-99. doi: 10.1016/B978-0-12-388448-0.00028-0.
10
Methods for studying RNA localization in bacteria.
Methods. 2016 Apr 1;98:99-103. doi: 10.1016/j.ymeth.2015.12.010. Epub 2015 Dec 17.

引用本文的文献

2
A Long Fluorescence Lifetime Probe for Labeling of Gram-Negative Bacteria.
Chem Biomed Imaging. 2024 Dec 5;3(1):45-50. doi: 10.1021/cbmi.4c00066. eCollection 2025 Jan 27.
3
Quantitative microbiology with widefield microscopy: navigating optical artefacts for accurate interpretations.
Npj Imaging. 2024;2(1):26. doi: 10.1038/s44303-024-00024-4. Epub 2024 Sep 2.
4
Methods for studying microbial acid stress responses: from molecules to populations.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae015.
5
Expanding the microbiologist toolbox new far-red-emitting dyes suitable for bacterial imaging.
Microbiol Spectr. 2024 Jan 11;12(1):e0369023. doi: 10.1128/spectrum.03690-23. Epub 2023 Dec 14.
6
Surveying membrane landscapes: a new look at the bacterial cell surface.
Nat Rev Microbiol. 2023 Aug;21(8):502-518. doi: 10.1038/s41579-023-00862-w. Epub 2023 Feb 24.
7
Evaluation of Azido 3-Deoxy-d--oct-2-ulosonic Acid (Kdo) Analogues for Click Chemistry-Mediated Metabolic Labeling of DZ2 Lipopolysaccharide.
ACS Omega. 2022 Sep 23;7(39):34997-35013. doi: 10.1021/acsomega.2c03711. eCollection 2022 Oct 4.
9
Practical observations on the use of fluorescent reporter systems in Clostridioides difficile.
Antonie Van Leeuwenhoek. 2022 Feb;115(2):297-323. doi: 10.1007/s10482-021-01691-8. Epub 2022 Jan 18.
10
Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells.
Front Microbiol. 2021 Oct 25;12:751880. doi: 10.3389/fmicb.2021.751880. eCollection 2021.

本文引用的文献

1
Small-molecule fluorescent probes and their design.
RSC Adv. 2018 Aug 14;8(51):29051-29061. doi: 10.1039/c8ra02297f.
2
Characterization of polar-flagellar-length mutants in .
Microbiology (Reading). 1997 May;143(5):1615-1621. doi: 10.1099/00221287-143-5-1615.
3
Photoconvertible Fluorescent Proteins and the Role of Dynamics in Protein Evolution.
Int J Mol Sci. 2017 Aug 18;18(8):1792. doi: 10.3390/ijms18081792.
5
Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy.
Methods Mol Biol. 2020;2101:123-133. doi: 10.1007/978-1-0716-0219-5_8.
6
Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli.
Sci Rep. 2019 Dec 2;9(1):18043. doi: 10.1038/s41598-019-54646-5.
7
Mechanisms of Incorporation for D-Amino Acid Probes That Target Peptidoglycan Biosynthesis.
ACS Chem Biol. 2019 Dec 20;14(12):2745-2756. doi: 10.1021/acschembio.9b00664. Epub 2019 Dec 5.
8
Time-resolved imaging-based CRISPRi screening.
Nat Methods. 2020 Jan;17(1):86-92. doi: 10.1038/s41592-019-0629-y. Epub 2019 Nov 18.
9
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21789-21799. doi: 10.1073/pnas.1907397116. Epub 2019 Oct 9.
10
Real-time visualization of mutations and their fitness effects in single bacteria.
Nat Protoc. 2019 Nov;14(11):3126-3143. doi: 10.1038/s41596-019-0215-x. Epub 2019 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验