Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F
INFM & Dipartimento di Fisica, Università di Trento, Povo, Italy.
Nature. 2000 Nov 23;408(6811):440-4. doi: 10.1038/35044012.
Adding optical functionality to a silicon microelectronic chip is one of the most challenging problems of materials research. Silicon is an indirect-bandgap semiconductor and so is an inefficient emitter of light. For this reason, integration of optically functional elements with silicon microelectronic circuitry has largely been achieved through the use of direct-bandgap compound semiconductors. For optoelectronic applications, the key device is the light source--a laser. Compound semiconductor lasers exploit low-dimensional electronic systems, such as quantum wells and quantum dots, as the active optical amplifying medium. Here we demonstrate that light amplification is possible using silicon itself, in the form of quantum dots dispersed in a silicon dioxide matrix. Net optical gain is seen in both waveguide and transmission configurations, with the material gain being of the same order as that of direct-bandgap quantum dots. We explain the observations using a model based on population inversion of radiative states associated with the Si/SiO2 interface. These findings open a route to the fabrication of a silicon laser.
为硅微电子芯片增添光学功能是材料研究中最具挑战性的问题之一。硅是一种间接带隙半导体,因此是低效的发光体。出于这个原因,光学功能元件与硅微电路的集成在很大程度上是通过使用直接带隙化合物半导体来实现的。对于光电子应用来说,关键器件是光源——激光器。化合物半导体激光器利用低维电子系统,如量子阱和量子点,作为有源光放大介质。在此,我们证明了以分散在二氧化硅基质中的量子点形式存在的硅本身就能够实现光放大。在波导和传输配置中都观察到了净光学增益,材料增益与直接带隙量子点的增益处于同一量级。我们使用基于与Si/SiO2界面相关的辐射态粒子数反转的模型来解释这些观测结果。这些发现为硅激光器的制造开辟了一条道路。