Meyssignac B, Fourest S, Mayer Michael, Johnson G C, Calafat F M, Ablain M, Boyer T, Cheng L, Desbruyères D, Forget G, Giglio D, Kuusela M, Locarnini R, Lyman J M, Llovel W, Mishonov A, Reagan J, Rousseau V, Benveniste J
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), 31400 Toulouse, France.
Research Department, European Centre for Medium-Range Weather Forecasts, 53175 Bonn, Germany.
Surv Geophys. 2024;45(6):1855-1874. doi: 10.1007/s10712-024-09865-5. Epub 2024 Oct 24.
This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project. The indirectly estimated horizontal convergence of the ocean heat transport is integrated between the rapid climate change-meridional overturning circulation and heatflux array (RAPID) section at 26.5°N (operating since 2004) and the overturning in the subpolar north atlantic program (OSNAP) section, situated at 53°-60°N (operating since 2014). This is to validate the ocean heat transport convergence estimate against an independent estimate derived from RAPID and OSNAP in-situ measurements. The mean ocean energy budget of the North Atlantic is closed to within ± 0.25 PW between RAPID and OSNAP sections. The mean oceanic heat transport convergence between these sections is 0.58 ± 0.25 PW, which agrees well with observed section transports. Interannual variability of the inferred oceanic heat transport convergence is also in reasonable agreement with the interannual variability observed at RAPID and OSNAP, with a correlation of 0.54 between annual time series. The correlation increases to 0.67 for biannual time series. Other estimates of the ocean energy budget based on ocean heat content tendency derived from various methods give similar results. Despite a large spread, the correlation is always significant meaning the results are robust against the method to estimate the ocean heat content tendency.
本研究利用海洋能量收支来估算2005 - 2018年期间北大西洋的海洋热输送辐合。海洋热输送的水平辐合是利用主要由卫星测高结合空间重力测量得出的海洋热含量趋势来估算的。净表面能量通量是根据大气能量输送的质量校正散度以及欧洲中期天气预报中心(ECMWF)ERA5再分析的趋势,并结合来自云和地球辐射能量系统项目的大气顶辐射通量推断得出的。间接估算的海洋热输送水平辐合是在北纬26.5°(自2004年起运行)的快速气候变化 - 经向翻转环流与热通量阵列(RAPID)断面和位于北纬53° - 60°(自2014年起运行)的亚极地北大西洋计划(OSNAP)断面之间进行积分的。这是为了根据从RAPID和OSNAP原位测量得出的独立估算值来验证海洋热输送辐合估算值。在RAPID和OSNAP断面之间,北大西洋的平均海洋能量收支闭合在±0.25拍瓦(PW)以内。这些断面之间的平均海洋热输送辐合为0.58±0.25拍瓦,这与观测到的断面输送量吻合得很好。推断出的海洋热输送辐合的年际变化也与在RAPID和OSNAP观测到的年际变化合理一致,年度时间序列之间的相关性为0.54。两年时间序列的相关性增加到0.67。基于各种方法得出的海洋热含量趋势对海洋能量收支的其他估算也给出了类似结果。尽管存在较大差异,但相关性始终显著,这意味着结果对于估算海洋热含量趋势的方法具有稳健性。