St Croix C M, Morgan B J, Wetter T J, Dempsey J A
John Rankin Laboratory of Pulmonary Medicine, Departments of Preventive Medicine and Surgery, University of Wisconsin, Madison, WI 53705, USA. cls13+@pitt.edu
J Physiol. 2000 Dec 1;529 Pt 2(Pt 2):493-504. doi: 10.1111/j.1469-7793.2000.00493.x.
We tested the hypothesis that reflexes arising from working respiratory muscle can elicit increases in sympathetic vasoconstrictor outflow to limb skeletal muscle, in seven healthy human subjects at rest. We measured muscle sympathetic nerve activity (MSNA) with intraneural electrodes in the peroneal nerve while the subject inspired (primarily with the diaphragm) against resistance, with mouth pressure (PM) equal to 60 % of maximal, a prolonged duty cycle (TI/TTot) of 0.70, breathing frequency (fb) of 15 breaths min-1 and tidal volume (VT) equivalent to twice eupnoea. This protocol was known to reduce diaphragm blood flow and cause fatigue. MSNA was unchanged during the first 1-2 min but then increased over time, to 77 +/- 51 % (s.d.) greater than control at exhaustion (mean time, 7 +/- 3 min). Mean arterial blood pressure (+12 mmHg) and heart rate (+27 beats min-1) also increased. When the VT, fb and TI/TTot of these trials were mimicked with no added resistance, neither MSNA nor arterial blood pressure increased. MSNA and arterial blood pressure also did not change in response to two types of increased central respiratory motor output that did not produce fatigue: (a) high inspiratory flow rate and fb without added resistance; or (b) high inspiratory effort against resistance with PM of 95 % maximal, TI/TTot of 0.35 and fb of 12 breaths min-1. The heart rate increased by 5-16 beats min-1 during these trials. Thus, in the absence of any effect of increased central respiratory motor output per se on limb MSNA, we attributed the time-dependent increase in MSNA during high resistance, prolonged duty cycle breathing to a reflex arising from a diaphragm that was accumulating metabolic end products in the face of high force output plus compromised blood flow.
我们在7名静息状态的健康受试者中检验了以下假设:工作中的呼吸肌产生的反射可引起交感缩血管神经向肢体骨骼肌的输出增加。我们使用腓总神经内的神经内电极测量肌肉交感神经活动(MSNA),受试者在对抗阻力吸气(主要通过膈肌)时,口腔压力(PM)等于最大压力的60%,延长的占空比(TI/TTot)为0.70,呼吸频率(fb)为每分钟15次呼吸,潮气量(VT)相当于两倍的平静呼吸量。已知该方案会减少膈肌血流量并导致疲劳。在最初的1 - 2分钟内,MSNA没有变化,但随后随时间增加,在疲劳时比对照增加了77±51%(标准差)(平均时间为7±3分钟)。平均动脉血压(升高12 mmHg)和心率(增加27次/分钟)也升高。当在无额外阻力的情况下模拟这些试验的VT、fb和TI/TTot时,MSNA和动脉血压均未升高。MSNA和动脉血压对两种不会产生疲劳的中枢呼吸运动输出增加也没有变化:(a)无额外阻力时的高吸气流量和fb;或(b)对抗阻力的高吸气努力,PM为最大压力的95%,TI/TTot为0.35,fb为每分钟12次呼吸。在这些试验中,心率增加了5 - 16次/分钟。因此,在中枢呼吸运动输出增加本身对肢体MSNA没有任何影响的情况下,我们将高阻力、延长占空比呼吸期间MSNA随时间的增加归因于膈肌产生的反射,该膈肌在高力输出加上血流受损的情况下积累代谢终产物。