Suppr超能文献

Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease.

作者信息

Chinopoulos C, Adam-Vizi V

机构信息

Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.

出版信息

J Neurochem. 2001 Jan;76(1):302-6. doi: 10.1046/j.1471-4159.2001.00060.x.

Abstract

Deficiency of complex I in the respiratory chain and oxidative stress induced by hydrogen peroxide occur simultaneously in dopaminergic neurones in Parkinson's disease. Here we demonstrate that the membrane potential of in situ mitochondria (Delta Psi m), as measured by the fluorescence change of JC-l (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbezimidazolyl-carbocyani ne iodide), collapses when isolated nerve terminals are exposed to hydrogen peroxide (H(2)O(2), 100 and 500 microM) in combination with the inhibition of complex I by rotenone (5 nM-1 microM). H(2)O(2) reduced the activity of complex I by 17%, and the effect of H(2)O(2) and rotenone on the enzyme was found to be additive. A decrease in Delta Psi m induced by H(2)O(2) was significant when the activity of complex I was reduced to a similar extent as found in Parkinson's disease (26%). The loss of Delta Psi m observed in the combined presence of complex I deficiency and H(2)O(2) indicates that when complex I is partially inhibited, mitochondria in nerve terminals become more vulnerable to H(2)O(2)-induced oxidative stress. This mechanism could be crucial in the development of bioenergetic failure in Parkinson's disease.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验