Suppr超能文献

比较个人轨迹并从纵向数据中得出因果推断。

Comparing personal trajectories and drawing causal inferences from longitudinal data.

作者信息

Raudenbush S W

机构信息

School of Education and Institute for Social Research, University of Michigan, 610 East University Avenue, Ann Arbor, Michigan 48109, USA.

出版信息

Annu Rev Psychol. 2001;52:501-25. doi: 10.1146/annurev.psych.52.1.501.

Abstract

This review considers statistical analysis of data from studies that obtain repeated measures on each of many participants. Such studies aim to describe the average change in populations and to illuminate individual differences in trajectories of change. A person-specific model for the trajectory of each participant is viewed as the foundation of any analysis having these aims. A second, between-person model describes how persons very in their trajectories. This two-stage modeling framework is common to a variety of popular analytic approaches variously labeled hierarchical models, multilevel models, latent growth models, and random coefficient models. Selected published examples reveal how the approach can be flexibly adapted to represent development in domains as diverse as vocabulary growth in early childhood, academic learning, and antisocial propensity during adolescence. The review then considers the problem of drawing causal inferences from repeated measures data.

摘要

本综述探讨了对众多参与者中的每一位都进行重复测量的研究数据的统计分析。此类研究旨在描述总体中的平均变化情况,并阐明变化轨迹中的个体差异。针对每位参与者的变化轨迹建立一个特定于个体的模型,被视为任何具有这些目标的分析的基础。第二个模型,即个体间模型,描述了个体在其变化轨迹上的差异情况。这种两阶段建模框架在各种流行的分析方法中很常见,这些方法有不同的标签,如层次模型、多级模型、潜在增长模型和随机系数模型。所选的已发表示例展示了该方法如何能够灵活地进行调整,以呈现诸如幼儿期词汇增长、学术学习以及青少年期反社会倾向等不同领域中的发展情况。然后,本综述考虑了从重复测量数据中得出因果推断的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验