Suppr超能文献

埃博拉病毒糖蛋白:蛋白水解加工、酰化作用、细胞嗜性及中和抗体检测

Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies.

作者信息

Ito H, Watanabe S, Takada A, Kawaoka Y

机构信息

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Virol. 2001 Feb;75(3):1576-80. doi: 10.1128/JVI.75.3.1576-1580.2001.

Abstract

Using the vesicular stomatitis virus (VSV) pseudotype system, we studied the functional properties of the Ebola virus glycoprotein (GP). Amino acid substitutions at the GP cleavage site, which reduce glycoprotein cleavability and viral infectivity in some viruses, did not appreciably change the infectivity of VSV pseudotyped with GP. Likewise, removal of two acylated cysteine residues in the transmembrane region of GP showed no discernible effects on infectivity. Although most filoviruses are believed to target endothelial cells and hepatocytes preferentially, the GP-carrying VSV showed greater affinity for epithelial cells than for either of these cell types, indicating that Ebola virus GP does not necessarily have strong tropism toward endothelial cells and hepatocytes. Finally, when it was used to screen for neutralizing antibodies against Ebola virus GP, the VSV pseudotype system allowed us to detect strain-specific neutralizing activity that was inhibited by secretory GP (SGP). This finding provides evidence of shared neutralizing epitopes on GP and SGP molecules and indicates the potential of SGP to serve as a decoy for neutralizing antibodies.

摘要

利用水疱性口炎病毒(VSV)假型系统,我们研究了埃博拉病毒糖蛋白(GP)的功能特性。在GP裂解位点的氨基酸替换,在某些病毒中会降低糖蛋白的可裂解性和病毒感染性,但对携带GP的VSV假型的感染性没有明显影响。同样,去除GP跨膜区的两个酰化半胱氨酸残基对感染性也没有明显影响。尽管大多数丝状病毒被认为优先靶向内皮细胞和肝细胞,但携带GP的VSV对上皮细胞的亲和力比对这两种细胞类型中的任何一种都更高,这表明埃博拉病毒GP不一定对内皮细胞和肝细胞有很强的嗜性。最后,当用它来筛选针对埃博拉病毒GP的中和抗体时,VSV假型系统使我们能够检测到被分泌型GP(SGP)抑制的毒株特异性中和活性。这一发现提供了GP和SGP分子上存在共同中和表位的证据,并表明SGP作为中和抗体诱饵的潜力。

相似文献

2
Infectivity-enhancing antibodies to Ebola virus glycoprotein.
J Virol. 2001 Mar;75(5):2324-30. doi: 10.1128/JVI.75.5.2324-2330.2001.
3
Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus.
Chembiochem. 2006 Oct;7(10):1605-11. doi: 10.1002/cbic.200600223.
7
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies.
J Virol. 2016 Mar 28;90(8):3890-3901. doi: 10.1128/JVI.00101-16. Print 2016 Apr.
8
The induction and characterization of monoclonal antibodies specific to GP of Ebola virus.
J Med Virol. 2020 Aug;92(8):996-1006. doi: 10.1002/jmv.25615. Epub 2020 Feb 3.
9
Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization.
Virology. 2006 Sep 1;352(2):345-56. doi: 10.1016/j.virol.2006.04.038. Epub 2006 Jun 13.

引用本文的文献

1
Direct Intercellular Transport Mode of Filovirus Nucleocapsids.
Int J Mol Sci. 2025 Sep 1;26(17):8485. doi: 10.3390/ijms26178485.
3
Antiviral defense against filovirus infections: targets and evasion mechanisms.
Future Microbiol. 2025 May-Jun;20(7-9):573-587. doi: 10.1080/17460913.2025.2501924. Epub 2025 May 7.
4
Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control.
Signal Transduct Target Ther. 2024 Sep 11;9(1):223. doi: 10.1038/s41392-024-01917-x.
5
Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity.
J Virol. 2024 Sep 17;98(9):e0068524. doi: 10.1128/jvi.00685-24. Epub 2024 Aug 20.
6
Conserved sequence features in intracellular domains of viral spike proteins.
Virology. 2024 Nov;599:110198. doi: 10.1016/j.virol.2024.110198. Epub 2024 Aug 2.
7
Ebola virus disease in children: epidemiology, pathogenesis, management, and prevention.
Pediatr Res. 2024 Jan;95(2):488-495. doi: 10.1038/s41390-023-02873-y. Epub 2023 Oct 30.
8
Pseudotyped Viruses for Marburgvirus and Ebolavirus.
Adv Exp Med Biol. 2023;1407:105-132. doi: 10.1007/978-981-99-0113-5_6.
9
Structure of the Inmazeb cocktail and resistance to Ebola virus escape.
Cell Host Microbe. 2023 Feb 8;31(2):260-272.e7. doi: 10.1016/j.chom.2023.01.002. Epub 2023 Jan 27.
10
Ebola Virus Activates IRE1α-Dependent Splicing.
Viruses. 2022 Dec 30;15(1):122. doi: 10.3390/v15010122.

本文引用的文献

1
Acylation of the Marburg virus glycoprotein.
Virology. 1995 Apr 1;208(1):289-97. doi: 10.1006/viro.1995.1151.
2
Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry.
Virology. 2000 Dec 5;278(1):20-6. doi: 10.1006/viro.2000.0601.
3
Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses.
J Gen Virol. 2000 Sep;81(Pt 9):2155-2159. doi: 10.1099/0022-1317-81-9-2155.
5
Mutational analysis of the putative fusion domain of Ebola virus glycoprotein.
J Virol. 1999 Oct;73(10):8907-12. doi: 10.1128/JVI.73.10.8907-8912.1999.
7
Immune response to filovirus infections.
Curr Top Microbiol Immunol. 1999;235:205-17. doi: 10.1007/978-3-642-59949-1_11.
8
Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells.
Curr Top Microbiol Immunol. 1999;235:175-204. doi: 10.1007/978-3-642-59949-1_10.
9
Animal pathology of filoviral infections.
Curr Top Microbiol Immunol. 1999;235:145-73. doi: 10.1007/978-3-642-59949-1_9.
10
Experimental filovirus infections.
Curr Top Microbiol Immunol. 1999;235:117-43. doi: 10.1007/978-3-642-59949-1_8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验