Reich D S, Mechler F, Victor J D
Laboratory of Biophysics, The Rockefeller University, New York, New York 10021, USA.
J Neurophysiol. 2001 Jan;85(1):305-18. doi: 10.1152/jn.2001.85.1.305.
We estimate the rates at which neurons in the primary visual cortex (V1) of anesthetized macaque monkeys transmit stimulus-related information in response to three types of visual stimulus. The stimuli-randomly modulated checkerboard patterns, stationary sinusoidal gratings, and drifting sinusoidal gratings-have very different spatiotemporal structures. We obtain the overall rate of information transmission, which we call formal information, by a direct method. We find the highest information rates in the responses of simple cells to drifting gratings (median: 10.3 bits/s, 0.92 bits/spike); responses to randomly modulated stimuli and stationary gratings transmit information at significantly lower rates. In general, simple cells transmit information at higher rates, and over a larger range, than do complex cells. Thus in the responses of V1 neurons, stimuli that are rapidly modulated do not necessarily evoke higher information rates, as might be the case with motion-sensitive neurons in area MT. By an extension of the direct method, we parse the formal information into attribute-specific components, which provide estimates of the information transmitted about contrast and spatiotemporal pattern. We find that contrast-specific information rates vary across neurons-about 0.3 to 2.1 bits/s or 0.05 to 0.22 bits/spike-but depend little on stimulus type. Spatiotemporal pattern-specific information rates, however, depend strongly on the type of stimulus and neuron (simple or complex). The remaining information rate, typically between 10 and 32% of the formal information rate for each neuron, cannot be unambiguously assigned to either contrast or spatiotemporal pattern. This indicates that some information concerning these two stimulus attributes is confounded in the responses of single neurons in V1. A model that considers a simple cell to consist of a linear spatiotemporal filter followed by a static rectifier predicts higher information rates than are found in real neurons and completely fails to replicate the performance of real cells in generating the confounded information.
我们估计了麻醉猕猴初级视觉皮层(V1)中的神经元在响应三种视觉刺激时传递与刺激相关信息的速率。这些刺激——随机调制的棋盘格图案、静止的正弦光栅和漂移的正弦光栅——具有非常不同的时空结构。我们通过一种直接方法获得了信息传递的总体速率,我们将其称为形式信息。我们发现简单细胞对漂移光栅的反应中信息速率最高(中位数:10.3比特/秒,0.92比特/脉冲);对随机调制刺激和静止光栅的反应传递信息的速率明显较低。一般来说,简单细胞比复杂细胞以更高的速率在更大的范围内传递信息。因此,在V1神经元的反应中,快速调制的刺激不一定会像MT区的运动敏感神经元那样引发更高的信息速率。通过扩展直接方法,我们将形式信息解析为特定属性的成分,这些成分提供了关于对比度和时空模式传递的信息的估计。我们发现,特定于对比度的信息速率在不同神经元之间有所不同——约为0.3至2.1比特/秒或0.05至0.22比特/脉冲——但几乎不依赖于刺激类型。然而,特定于时空模式的信息速率强烈依赖于刺激类型和神经元类型(简单或复杂)。每个神经元的剩余信息速率通常为形式信息速率的10%至32%,无法明确地分配给对比度或时空模式。这表明在V1单个神经元的反应中,关于这两个刺激属性的一些信息是混淆的。一个将简单细胞视为由线性时空滤波器后跟静态整流器组成的模型预测的信息速率高于实际神经元中发现的速率,并且完全无法复制实际细胞在生成混淆信息方面的表现。