Bair Wyeth, Movshon J Anthony
Center for Neural Science, New York University, New York, New York 10003, USA.
J Neurosci. 2004 Aug 18;24(33):7305-23. doi: 10.1523/JNEUROSCI.0554-04.2004.
Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving sinusoidal gratings and spike-triggered average (STA) analysis. The window of temporal integration revealed by the STAs varied substantially with stimulus parameters, extending farther back in time for slow motion, high SF, and low contrast. At low speeds and high SF, STA peaks were larger, indicating that a single spike often conveyed more information about the stimulus under conditions in which the mean firing rate was very low. The observed trends were similar in V1 and MT and offer a physiological correlate for a large body of psychophysical data on temporal integration. We applied the same visual stimuli to a model of motion detection based on oriented linear filters (a motion energy model) that incorporated an integrate-and-fire mechanism and found that it did not account for the neuronal data. Our results show that cortical motion processing in V1 and in MT is highly nonlinear and stimulus dependent. They cast considerable doubt on the ability of simple oriented filter models to account for the output of direction-selective neurons in a general manner. Finally, they suggest that spike rate tuning functions may miss important aspects of the neural coding of motion for stimulus conditions that evoke low firing rates.
初级视皮层(V1)和纹外运动区域MT/V5中的方向选择性神经元构成了一个关键通道,该通道将时空整合的早期皮层机制与构成运动感知基础的下游信号联系起来。我们使用随机移动的正弦光栅和脉冲触发平均(STA)分析,研究了方向选择性细胞中的时间整合如何依赖于速度、空间频率(SF)和对比度。STA揭示的时间整合窗口随刺激参数有很大变化,对于慢运动、高SF和低对比度,其在时间上回溯得更远。在低速和高SF时,STA峰值更大,这表明在平均放电率非常低的条件下,单个脉冲通常能传达更多关于刺激的信息。在V1和MT中观察到的趋势相似,为大量关于时间整合的心理物理学数据提供了生理关联。我们将相同的视觉刺激应用于基于定向线性滤波器的运动检测模型(运动能量模型),该模型纳入了积分发放机制,结果发现它无法解释神经元数据。我们的结果表明,V1和MT中的皮层运动处理是高度非线性且依赖于刺激的。它们对简单定向滤波器模型以一般方式解释方向选择性神经元输出的能力提出了相当大的疑问。最后,它们表明对于诱发低放电率的刺激条件,放电率调谐函数可能会遗漏运动神经编码的重要方面。