Suppr超能文献

苜蓿中华根瘤菌脂多糖生物合成中一个染色体区域的遗传特征分析

Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis.

作者信息

Lagares A, Hozbor D F, Niehaus K, Otero A J, Lorenzen J, Arnold W, Pühler A

机构信息

Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina.

出版信息

J Bacteriol. 2001 Feb;183(4):1248-58. doi: 10.1128/JB.183.4.1248-1258.2001.

Abstract

The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.

摘要

本文介绍了苜蓿中华根瘤菌2011株中一个5.5 kb染色体区域的遗传特征,该区域包含lpsB基因,它是与苜蓿属植物共生正常发育所需的基因。该DNA片段的核苷酸序列显示存在六个基因:正向转录的greA和lpsB;反向转录的lpsE、lpsD、lpsC和lrp。除lpsB外,其他lps基因与结瘤和固氮均无关。对lpsB转录组织的分析表明,greA和lpsB是独立转录单元的一部分,这与在greA和lpsB之间发现的与“非氮”启动子共有序列同源的DNA片段的结果一致。lpsB相对于其第一个下游编码序列lpsE的相反方向表明,lpsB突变体中LPS的改变和共生缺陷都是单个基因中主要非极性缺陷的结果。全局序列比较显示,苜蓿中华根瘤菌的greA - lpsB和lrp基因的遗传组织与其在豌豆根瘤菌蚕豆生物变种中的同源位点相似。特别是,发现lpsB的翻译产物与豌豆根瘤菌蚕豆生物变种中由lpcC基因编码的核心相关生物合成甘露糖基转移酶之间具有高度序列相似性。在遗传互补实验中证明了这两个基因之间的功能关系,其中苜蓿中华根瘤菌lpsB基因导入豌豆根瘤菌lpcC突变体后恢复了野生型LPS表型。这些结果支持了苜蓿中华根瘤菌lpsB也编码参与LPS核心生物合成的甘露糖基转移酶的观点。有证据表明在根瘤菌科的几个成员中存在其他lpsB同源序列。

相似文献

1
Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis.
J Bacteriol. 2001 Feb;183(4):1248-58. doi: 10.1128/JB.183.4.1248-1258.2001.
4
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3938-43. doi: 10.1073/pnas.062425699.
6
Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants.
J Bacteriol. 2003 Jul;185(13):3853-62. doi: 10.1128/JB.185.13.3853-3862.2003.
7
Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis.
Mol Plant Microbe Interact. 2017 Apr;30(4):312-324. doi: 10.1094/MPMI-02-17-0030-R. Epub 2017 Apr 10.
9
Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
Mol Plant Microbe Interact. 2018 Oct;31(10):1075-1082. doi: 10.1094/MPMI-01-18-0004-R. Epub 2018 Aug 20.

引用本文的文献

1
Identification and functional analysis of recent IS transposition events in rhizobia.
Mob DNA. 2024 Sep 5;15(1):17. doi: 10.1186/s13100-024-00327-8.
2
Transcriptomic response of to the predatory attack of .
Front Microbiol. 2023 Jun 19;14:1213659. doi: 10.3389/fmicb.2023.1213659. eCollection 2023.
3
Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation.
mBio. 2021 Aug 31;12(4):e0089521. doi: 10.1128/mBio.00895-21. Epub 2021 Jul 27.
4
Structure of the unusual HH103 lipopolysaccharide and its role in symbiosis.
J Biol Chem. 2020 Aug 7;295(32):10969-10987. doi: 10.1074/jbc.RA120.013393. Epub 2020 Jun 16.
8
The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.
J Bacteriol. 2013 Aug;195(16):3663-71. doi: 10.1128/JB.00480-13. Epub 2013 Jun 7.

本文引用的文献

1
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
J Bacteriol. 2000 Aug;182(15):4310-8. doi: 10.1128/JB.182.15.4310-4318.2000.
6
Recent advances in the study of nod factor perception and signal transduction.
Biochimie. 1999 Jun;81(6):669-74. doi: 10.1016/s0300-9084(99)80124-2.
7
Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central argentina and uruguay.
Appl Environ Microbiol. 1999 Apr;65(4):1420-7. doi: 10.1128/AEM.65.4.1420-1427.1999.
8
Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis.
Curr Opin Plant Biol. 1998 Aug;1(4):353-9. doi: 10.1016/1369-5266(88)80059-1.
9
Regulation of symbiotic root nodule development.
Annu Rev Genet. 1998;32:33-57. doi: 10.1146/annurev.genet.32.1.33.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验