INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France.
PLoS One. 2013;8(2):e56043. doi: 10.1371/journal.pone.0056043. Epub 2013 Feb 8.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.
根瘤菌是能够在细胞内定殖豆科植物根瘤细胞并在其中形成固氮共生体的共生土壤细菌。植物细胞骨架如何响应根瘤菌的定殖而重新组织仍然知之甚少,特别是因为缺乏体外感染测定。在这里,我们报告了使用异源 HeLa 细胞模型来实验性地解决这个问题。我们观察到模式根瘤菌 Sinorhizobium meliloti 以及其他根瘤菌能够在体外触发培养的 HeLa 细胞中肌动蛋白细胞骨架的重大重排。细胞变形与三种主要的小 RhoGTPases Cdc42、RhoA 和 Rac1 的抑制有关。细菌进入、细胞骨架重排和 RhoGTPase 活性的调节需要完整的 S. meliloti 生物合成途径来合成 Queuosine,Queuosine 是一种通过 tRNA 调节蛋白质翻译的超修饰核苷,可能还调节 mRNA 修饰。我们表明,完整的细菌 Queuosine 生物合成途径对于 S. meliloti 与其宿主植物 Medicago truncatula 的有效固氮共生也是必需的,因此表明 S. meliloti 的一个或几个关键共生功能受到 Queuosine 的控制。我们讨论了 Que 突变体的共生缺陷是否至少部分源于改变了修饰植物细胞肌动蛋白细胞骨架的能力。