Suppr超能文献

Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction.

作者信息

Springer M S, DeBry R W, Douady C, Amrine H M, Madsen O, de Jong W W, Stanhope M J

机构信息

Department of Biology, University of California at Riverside, CA 92521, USA.

出版信息

Mol Biol Evol. 2001 Feb;18(2):132-43. doi: 10.1093/oxfordjournals.molbev.a003787.

Abstract

Both mitochondrial and nuclear gene sequences have been employed in efforts to reconstruct deep-level phylogenetic relationships. A fundamental question in molecular systematics concerns the efficacy of different types of sequences in recovering clades at different taxonomic levels. We compared the performance of four mitochondrial data sets (cytochrome b, cytochrome oxidase II, NADH dehydrogenase subunit I, 12S rRNA-tRNA-16S rRNA) and eight nuclear data sets (exonic regions of alpha-2B adrenergic receptor, aquaporin, ss-casein, gamma-fibrinogen, interphotoreceptor retinoid binding protein, kappa-casein, protamine, von Willebrand Factor) in recovering deep-level mammalian clades. We employed parsimony and minimum-evolution with a variety of distance corrections for superimposed substitutions. In 32 different pairwise comparisons between these mitochondrial and nuclear data sets, we used the maximum set of overlapping taxa. In each case, the variable-length bootstrap was used to resample at the size of the smaller data set. The nuclear exons consistently performed better than mitochondrial protein and rRNA-tRNA coding genes on a per-residue basis in recovering benchmark clades. We also concatenated nuclear genes for overlapping taxa and made comparisons with concatenated mitochondrial protein-coding genes from complete mitochondrial genomes. The variable-length bootstrap was used to score the recovery of benchmark clades as a function of the number of resampled base pairs. In every case, the nuclear concatenations were more efficient than the mitochondrial concatenations in recovering benchmark clades. Among genes included in our study, the nuclear genes were much less affected by superimposed substitutions. Nuclear genes having appropriate rates of substitution should receive strong consideration in efforts to reconstruct deep-level phylogenetic relationships.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验