Fenn J Daniel, Song Hojun, Cameron Stephen L, Whiting Michael F
Department of Biology, Brigham Young University, Provo, UT 84602, USA.
Mol Phylogenet Evol. 2008 Oct;49(1):59-68. doi: 10.1016/j.ympev.2008.07.004. Epub 2008 Jul 15.
The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that the mtgenome data can resolve over a wide time scale from the Permian (approximately 260 MYA) to the Tertiary (approximately 50 MYA).
利用直翅目初步系统发育框架研究线粒体基因组(mtgenomes)的系统发育效用。本研究展示了来自四个直翅目科的五个新测序基因组。虽然所有剑尾亚目和多新翅类群都保留了祖先的基因顺序,但所有螽亚目谱系,包括新测序的螽亚目物种,都包含一种tRNA重排,即从昆虫基础模式的tRNA(Lys)(K)-tRNA(Asp)(D)交换为tRNA(Asp)(D)-tRNA(Lys)(K),这证实了这种重排可能是该亚目的分子共衍征。在简约法、最大似然法和贝叶斯推断的分析方案下,严格检验了mtgenomes中的系统发育信号,以及基因包含/排除、数据重新编码、间隙编码和不同的划分方案如何影响系统发育重建。当同时分析所有可用数据时,在我们的分类群抽样背景下,直翅目及其两个亚目,即螽亚目和剑尾亚目,无论采用何种最优标准,都能始终如一地得到恢复。当将蛋白质编码基因作为一个单一分区进行分析时,得到的拓扑结构与联合分析几乎相同,这表明mtgenome的许多信号来自蛋白质编码基因。单独分析转移RNA和核糖体RNA时表现不佳,但与蛋白质编码基因结合分析时会贡献信号。当所有基因一起分析时,包含蛋白质编码基因的第三密码子位置不会对系统发育重建产生负面影响,而将蛋白质编码基因重新编码为氨基酸序列会引入人为分辨率。在贝叶斯框架下过度划分似乎对实现收敛有负面影响。我们的研究结果表明,当同时分析mtgenome的所有可用核苷酸数据时,能做出最佳的系统发育推断,并且mtgenome数据可以在从二叠纪(约2.6亿年前)到第三纪(约5000万年前)的广泛时间尺度上进行解析。