Suppr超能文献

Onion root water transport sensitive to water channel and K+ channel inhibitors.

作者信息

Tazawa M, Sutou E, Shibasaka M

机构信息

Department of Applied Physics and Chemistry, Fukui University of Technology, Gakuen, Fukui, 910-8505, Japan.

出版信息

Plant Cell Physiol. 2001 Jan;42(1):28-36. doi: 10.1093/pcp/pce004.

Abstract

Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of root cells less sensitive to K+. C9 decreased the rate of turgor reduction induced by sorbitol solution to the same extent as HgCl2. Thus, C9 is assumed to decrease the hydraulic conductivity (Lp) of the plasma membrane by blocking water channels, although possible inhibition of the plasmodesmata of the root symplast by C9 cannot be excluded. Onion roots transported water from the tip to the base in the absence of the osmotic gradient. This non-osmotic water flux (Jnos) was equivalent to Jos induced by 0.029 M sorbitol. Jnos increased when Jos was increased by repetition of osmosis and decreased when Jos was decreased by either HgCl2 or by C9. The correlation between Jnos and Jos suggests that non-osmotic water transport occurs via the same pathways as those for osmotic water transport.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验