Suppr超能文献

宿主-寄生蜂相互作用的双组分模型:生物防治中寄生蜂淹没式释放量的确定

A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control.

作者信息

Grasman J, van Herwaarden O A, Hemerik L, van Lenteren J C

机构信息

Department of Mathematics, Wageningen Agricultural University, 4, 6703 HA Wageningen, Dreijenlaan, The Netherlands.

出版信息

Math Biosci. 2001 Feb;169(2):207-16. doi: 10.1016/s0025-5564(00)00051-1.

Abstract

A two-component differential equation model is formulated for a host-parasitoid interaction. Transient dynamics and population crashes of this system are analysed using differential inequalities. Two different cases can be distinguished: either the intrinsic growth rate of the host population is smaller than the maximum growth rate of the parasitoid or vice versa. In the latter case, the initial ratio of parasitoids to hosts should exceed a given threshold, in order to (temporarily) halt the growth of the host population. When not only oviposition but also host-feeding occurs the dynamics do not change qualitatively. In the case that the maximum growth rate of the parasitoid population is smaller than the intrinsic growth rate of the host, a threshold still exists for the number of parasitoids in an inundative release in order to limit the growth of the host population. The size of an inundative release of parasitoids, which is necessary to keep the host population below a certain level, can be determined from the two-component model. When parameter values for hosts and parasitoids are known, an effective control of pests can be found. First it is determined whether the parasitoids are able to suppress their hosts fully. Moreover, using our simple rule of thumb it can be assessed whether suppression is also possible when the relative growth rate of the host population exceeds that of the parasitoid population. With a numerical investigation of our simple system the design of parasitoid release strategies for specific situations can be computed.

摘要

针对宿主 - 寄生蜂相互作用构建了一个双组分微分方程模型。利用微分不等式分析了该系统的瞬态动力学和种群崩溃情况。可以区分两种不同情况:要么宿主种群的内在增长率小于寄生蜂的最大增长率,要么反之。在后一种情况下,为了(暂时)阻止宿主种群增长,寄生蜂与宿主的初始比例应超过给定阈值。当不仅发生产卵而且还存在宿主取食时,动力学性质不会改变。在寄生蜂种群的最大增长率小于宿主的内在增长率的情况下,为了限制宿主种群增长,在淹没式释放中寄生蜂的数量仍存在一个阈值。可以根据双组分模型确定将宿主种群控制在一定水平以下所需的寄生蜂淹没式释放量。当已知宿主和寄生蜂的参数值时,就可以找到有效的害虫控制方法。首先确定寄生蜂是否能够完全抑制其宿主。此外,使用我们简单的经验法则,可以评估当宿主种群的相对增长率超过寄生蜂种群的相对增长率时是否也能实现抑制。通过对我们简单系统的数值研究,可以计算出针对特定情况的寄生蜂释放策略设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验