Jaffrey S R, Erdjument-Bromage H, Ferris C D, Tempst P, Snyder S H
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Nat Cell Biol. 2001 Feb;3(2):193-7. doi: 10.1038/35055104.
Nitric oxide (NO) has been linked to numerous physiological and pathophysiological events that are not readily explained by the well established effects of NO on soluble guanylyl cyclase. Exogenous NO S-nitrosylates cysteine residues in proteins, but whether this is an important function of endogenous NO is unclear. Here, using a new proteomic approach, we identify a population of proteins that are endogenously S-nitrosylated, and demonstrate the loss of this modification in mice harbouring a genomic deletion of neuronal NO synthase (nNOS). Targets of NO include metabolic, structural and signalling proteins that may be effectors for neuronally generated NO. These findings establish protein S-nitrosylation as a physiological signalling mechanism for nNOS.
一氧化氮(NO)与众多生理和病理生理事件相关联,而这些事件难以通过NO对可溶性鸟苷酸环化酶的既定作用来轻易解释。外源性NO会使蛋白质中的半胱氨酸残基发生S-亚硝基化,但内源性NO的这一功能是否重要尚不清楚。在这里,我们使用一种新的蛋白质组学方法,鉴定出一群发生内源性S-亚硝基化的蛋白质,并证明在神经元型一氧化氮合酶(nNOS)基因缺失的小鼠中这种修饰会消失。NO的作用靶点包括代谢、结构和信号蛋白,它们可能是神经元产生的NO的效应器。这些发现确立了蛋白质S-亚硝基化作为nNOS的一种生理信号传导机制。