Suppr超能文献

特邀综述:骨骼肌收缩活动诱导的线粒体生物发生

Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle.

作者信息

Hood D A

机构信息

Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3.

出版信息

J Appl Physiol (1985). 2001 Mar;90(3):1137-57. doi: 10.1152/jappl.2001.90.3.1137.

Abstract

Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca(2+) fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c-jun and nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.

摘要

慢性收缩活动可促使肌肉发生线粒体生物合成。这种适应性变化会导致腺嘌呤核苷酸代谢发生显著改变,同时提高抗疲劳能力。绝大多数线粒体蛋白源自核基因组,这就需要进行基因转录、将mRNA翻译成蛋白质、通过导入机制将蛋白质靶向输送到线粒体区室,以及在呼吸链或线粒体基质中组装多亚基酶复合物。响应收缩活动而启动这一基因表达途径的假定信号,可能源于ATP周转加速、线粒体ATP合成与细胞ATP需求之间的失衡以及Ca(2+)通量的综合作用。这些快速事件之后是运动反应性激酶的激活,这些激酶会使诸如转录因子等蛋白质磷酸化,随后转录因子会与DNA中的上游调控区域结合,从而改变转录速率。收缩活动会增加核编码蛋白如细胞色素c和线粒体转录因子A(Tfam)的mRNA水平,以及上游转录因子如c-jun和核呼吸因子-1(NRF-1)的mRNA水平。mRNA水平的变化在运动后恢复期通常最为明显,它们可能是收缩活动诱导的转录增加或mRNA稳定性提高的结果。Tfam被导入线粒体并控制线粒体DNA(mtDNA)的表达。mtDNA仅为呼吸链贡献13种蛋白质产物,但它们对电子传递和ATP合成至关重要。收缩活动会增加Tfam的表达并加速其导入线粒体,从而导致mtDNA转录和复制增加。核基因组和线粒体基因组这种协调表达的结果,以及对磷脂合成变化了解甚少的情况,是肌肉线粒体网状结构的扩展。有必要进一步了解1)mtDNA表达的调控,2)NRF-1和其他转录因子的上游激活剂,3)mRNA稳定蛋白的身份,以及4)收缩活动诱导的凋亡信号变化的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验