Suppr超能文献

用于脑机接口(BCI)的基于特定个体空间模式的实时脑电图分析。

Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI).

作者信息

Guger C, Ramoser H, Pfurtscheller G

机构信息

Department of Medical Informatics, Institute of Biomedical Engineering, Graz University of Technology, Austria.

出版信息

IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56. doi: 10.1109/86.895947.

Abstract

Electroencephalogram (EEG) recordings during right and left motor imagery allow one to establish a new communication channel for, e.g., patients with amyotrophic lateral sclerosis. Such an EEG-based brain-computer interface (BCI) can be used to develop a simple binary response for the control of a device. Three subjects participated in a series of on-line sessions to test if it is possible to use common spatial patterns to analyze EEG in real time in order to give feedback to the subjects. Furthermore, the classification accuracy that can be achieved after only three days of training was investigated. The patterns are estimated from a set of multichannel EEG data by the method of common spatial patterns and reflect the specific activation of cortical areas. By construction, common spatial patterns weight each electrode according to its importance to the discrimination task and suppress noise in individual channels by using correlations between neighboring electrodes. Experiments with three subjects resulted in an error rate of 2, 6 and 14% during on-line discrimination of left- and right-hand motor imagery after three days of training and make common spatial patterns a promising method for an EEG-based brain-computer interface.

摘要

在左右运动想象期间进行脑电图(EEG)记录,能够为例如肌萎缩侧索硬化症患者建立一种新的通信渠道。这种基于脑电图的脑机接口(BCI)可用于开发一种简单的二元响应,以控制设备。三名受试者参加了一系列在线实验,以测试是否可以使用共同空间模式实时分析脑电图,从而向受试者提供反馈。此外,还研究了仅经过三天训练后所能达到的分类准确率。这些模式通过共同空间模式方法从一组多通道脑电图数据中估计得出,反映了皮质区域的特定激活情况。通过构建,共同空间模式根据每个电极对辨别任务的重要性对其进行加权,并利用相邻电极之间的相关性抑制各个通道中的噪声。对三名受试者进行的实验结果表明,经过三天训练后,在在线辨别左手和右手运动想象时的错误率分别为2%、6%和14%,这使得共同空间模式成为基于脑电图的脑机接口的一种很有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验