Suppr超能文献

基于通道相关多层脑电图时频表示与基于迁移学习的深度卷积神经网络框架的少通道运动想象脑电图分类

Channel-Dependent Multilayer EEG Time-Frequency Representations Combined with Transfer Learning-Based Deep CNN Framework for Few-Channel MI EEG Classification.

作者信息

Liu Ziang, Fan Kang, Gu Qin, Ruan Yaduan

机构信息

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210028, China.

出版信息

Bioengineering (Basel). 2025 Jun 12;12(6):645. doi: 10.3390/bioengineering12060645.

Abstract

The study of electroencephalogram (EEG) signals is crucial for understanding brain function and has extensive applications in clinical diagnosis, neuroscience, and brain-computer interface technology. This paper addresses the challenge of recognizing motor imagery EEG signals with few channels, which is essential for portable and real-time applications. A novel framework is proposed that applies a continuous wavelet transform to convert time-domain EEG signals into two-dimensional time-frequency representations. These images are then concatenated into channel-dependent multilayer EEG time-frequency representations (CDML-EEG-TFR), incorporating multidimensional information of time, frequency, and channels, allowing for a more comprehensive and enriched brain representation under the constraint of few channels. By adopting a deep convolutional neural network with EfficientNet as the backbone and utilizing pre-trained weights from natural image datasets for transfer learning, the framework can simultaneously learn temporal, spatial, and channel features embedded in the CDML-EEG-TFR. Moreover, the transfer learning strategy effectively addresses the issue of data sparsity in the context of a few channels. Our approach enhances the classification accuracy of motor imagery EEG signals in few-channel scenarios. Experimental results on the BCI Competition IV 2b dataset show a significant improvement in classification accuracy, reaching 80.21%. This study highlights the potential of CDML-EEG-TFR and the EfficientNet-based transfer learning strategy in few-channel EEG signal classification, laying a foundation for practical applications and further research in medical and sports fields.

摘要

脑电图(EEG)信号研究对于理解脑功能至关重要,并且在临床诊断、神经科学和脑机接口技术中有着广泛应用。本文探讨了少通道情况下运动想象脑电信号识别的挑战,这对于便携式和实时应用至关重要。提出了一种新颖的框架,该框架应用连续小波变换将时域脑电信号转换为二维时频表示。然后将这些图像拼接成与通道相关的多层脑电时频表示(CDML - EEG - TFR),融合了时间、频率和通道的多维信息,在少通道约束下实现更全面、丰富的脑表征。通过采用以EfficientNet为骨干的深度卷积神经网络,并利用来自自然图像数据集的预训练权重进行迁移学习,该框架能够同时学习嵌入在CDML - EEG - TFR中的时间、空间和通道特征。此外,迁移学习策略有效解决了少通道情况下的数据稀疏问题。我们的方法提高了少通道场景下运动想象脑电信号的分类准确率。在BCI Competition IV 2b数据集上的实验结果表明分类准确率有显著提高,达到了80.21%。本研究突出了CDML - EEG - TFR和基于EfficientNet的迁移学习策略在少通道脑电信号分类中的潜力,为医学和体育领域的实际应用及进一步研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/12189518/5b3d7f01d826/bioengineering-12-00645-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验