Liu Ziang, Fan Kang, Gu Qin, Ruan Yaduan
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210028, China.
Bioengineering (Basel). 2025 Jun 12;12(6):645. doi: 10.3390/bioengineering12060645.
The study of electroencephalogram (EEG) signals is crucial for understanding brain function and has extensive applications in clinical diagnosis, neuroscience, and brain-computer interface technology. This paper addresses the challenge of recognizing motor imagery EEG signals with few channels, which is essential for portable and real-time applications. A novel framework is proposed that applies a continuous wavelet transform to convert time-domain EEG signals into two-dimensional time-frequency representations. These images are then concatenated into channel-dependent multilayer EEG time-frequency representations (CDML-EEG-TFR), incorporating multidimensional information of time, frequency, and channels, allowing for a more comprehensive and enriched brain representation under the constraint of few channels. By adopting a deep convolutional neural network with EfficientNet as the backbone and utilizing pre-trained weights from natural image datasets for transfer learning, the framework can simultaneously learn temporal, spatial, and channel features embedded in the CDML-EEG-TFR. Moreover, the transfer learning strategy effectively addresses the issue of data sparsity in the context of a few channels. Our approach enhances the classification accuracy of motor imagery EEG signals in few-channel scenarios. Experimental results on the BCI Competition IV 2b dataset show a significant improvement in classification accuracy, reaching 80.21%. This study highlights the potential of CDML-EEG-TFR and the EfficientNet-based transfer learning strategy in few-channel EEG signal classification, laying a foundation for practical applications and further research in medical and sports fields.
脑电图(EEG)信号研究对于理解脑功能至关重要,并且在临床诊断、神经科学和脑机接口技术中有着广泛应用。本文探讨了少通道情况下运动想象脑电信号识别的挑战,这对于便携式和实时应用至关重要。提出了一种新颖的框架,该框架应用连续小波变换将时域脑电信号转换为二维时频表示。然后将这些图像拼接成与通道相关的多层脑电时频表示(CDML - EEG - TFR),融合了时间、频率和通道的多维信息,在少通道约束下实现更全面、丰富的脑表征。通过采用以EfficientNet为骨干的深度卷积神经网络,并利用来自自然图像数据集的预训练权重进行迁移学习,该框架能够同时学习嵌入在CDML - EEG - TFR中的时间、空间和通道特征。此外,迁移学习策略有效解决了少通道情况下的数据稀疏问题。我们的方法提高了少通道场景下运动想象脑电信号的分类准确率。在BCI Competition IV 2b数据集上的实验结果表明分类准确率有显著提高,达到了80.21%。本研究突出了CDML - EEG - TFR和基于EfficientNet的迁移学习策略在少通道脑电信号分类中的潜力,为医学和体育领域的实际应用及进一步研究奠定了基础。