Lee Hyemin S, Schreiner Leonhard, Jo Seong-Hyeon, Sieghartsleitner Sebastian, Jordan Michael, Pretl Harald, Guger Christoph, Park Hyung-Soon
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
g.tec Medical Engineering GmbH, Schiedlberg, Upper Austria, Austria.
Front Neurosci. 2022 Oct 19;16:1009878. doi: 10.3389/fnins.2022.1009878. eCollection 2022.
Brain-Computer Interface (BCI) technology enables users to operate external devices without physical movement. Electroencephalography (EEG) based BCI systems are being actively studied due to their high temporal resolution, convenient usage, and portability. However, fewer studies have been conducted to investigate the impact of high spatial resolution of EEG on decoding precise body motions, such as finger movements, which are essential in activities of daily living. Low spatial sensor resolution, as found in common EEG systems, can be improved by omitting the conventional standard of EEG electrode distribution (the international 10-20 system) and ordinary mounting structures (e.g., flexible caps). In this study, we used newly proposed flexible electrode grids attached directly to the scalp, which provided ultra-high-density EEG (uHD EEG). We explored the performance of the novel system by decoding individual finger movements using a total of 256 channels distributed over the contralateral sensorimotor cortex. Dense distribution and small-sized electrodes result in an inter-electrode distance of 8.6 mm (uHD EEG), while that of conventional EEG is 60 to 65 mm on average. Five healthy subjects participated in the experiment, performed single finger extensions according to a visual cue, and received avatar feedback. This study exploits mu (8-12 Hz) and beta (13-25 Hz) band power features for classification and topography plots. 3D ERD/S activation plots for each frequency band were generated using the MNI-152 template head. A linear support vector machine (SVM) was used for pairwise finger classification. The topography plots showed regular and focal post-cue activation, especially in subjects with optimal signal quality. The average classification accuracy over subjects was 64.8 (6.3)%, with the middle versus ring finger resulting in the highest average accuracy of 70.6 (9.4)%. Further studies are required using the uHD EEG system with real-time feedback and motor imagery tasks to enhance classification performance and establish the basis for BCI finger movement control of external devices.
脑机接口(BCI)技术使用户能够在不进行身体运动的情况下操作外部设备。基于脑电图(EEG)的BCI系统因其高时间分辨率、使用便捷性和便携性而受到积极研究。然而,针对EEG的高空间分辨率对解码精确身体运动(如手指运动,这在日常生活活动中至关重要)的影响进行研究的较少。常见EEG系统中存在的低空间传感器分辨率,可以通过摒弃EEG电极分布的传统标准(国际10-20系统)和普通安装结构(如柔性帽)来提高。在本研究中,我们使用了新提出的直接附着在头皮上的柔性电极网格,其提供了超高密度脑电图(uHD EEG)。我们通过使用分布在对侧感觉运动皮层上的总共256个通道解码单个手指运动,探索了该新型系统的性能。密集分布和小尺寸电极导致电极间距离为8.6毫米(uHD EEG),而传统EEG的平均电极间距离为60至65毫米。五名健康受试者参与了实验,根据视觉提示进行单手指伸展,并接收虚拟化身反馈。本研究利用μ(8-12赫兹)和β(13-25赫兹)频段功率特征进行分类和地形图绘制。使用MNI-152模板头生成了每个频段的3D ERD/S激活图。使用线性支持向量机(SVM)进行手指两两分类。地形图显示出提示后有规律且集中的激活,尤其是在信号质量最佳的受试者中。受试者的平均分类准确率为64.8(6.3)%,其中食指与无名指分类的平均准确率最高,为70.6(9.4)%。需要进一步使用具有实时反馈和运动想象任务的uHD EEG系统进行研究,以提高分类性能并为外部设备的BCI手指运动控制奠定基础。