Loty C, Sautier J M, Tan M T, Oboeuf M, Jallot E, Boulekbache H, Greenspan D, Forest N
Laboratoire de Biologie-Odontologie, Faculté de Chirurgie Dentaire, Institut Biomédical des Cordeliers, Université Paris 7, France.
J Bone Miner Res. 2001 Feb;16(2):231-9. doi: 10.1359/jbmr.2001.16.2.231.
In this study, we have investigated the behavior of fetal rat osteoblasts cultured on bioactive glasses with 55 wt% silica content (55S) and on a bioinert glass (60S) used either in the form of granules or in the form of disks. In the presence of Bioglass granules (55 wt% silica content), phase contrast microscopy permitted step-by-step visualization of the formation of bone nodules in contact with the particles. Ultrastructural observations of undecalcified sections revealed the presence of an electron-dense layer composed of needle-shaped crystals at the periphery of the material that seemed to act as a nucleating surface for biological crystals. Furthermore, energy dispersive X-ray (EDX) analysis and electron diffraction patterns showed that this interface contains calcium (Ca) and phosphorus (P) and was highly crystalline. When rat bone cells were cultured on 55S disks, scanning electron microscopic (SEM) observations revealed that cells attached, spread to all substrata, and formed multilayered nodular structures by day 10 in culture. Furthermore, cytoenzymatic localization of alkaline phosphatase (ALP) and immunolabeling with bone sialoprotein antibody revealed a positive staining for the bone nodules formed in cultures on 55S. In addition, the specific activity of ALP determined biochemically was significantly higher in 55S cultures than in the controls. SEM observations of the material surfaces after scraping off the cell layers showed that mineralized bone nodules remained attached on 55S surfaces but not on 60S. X-ray microanalysis indicated the presence of Ca and P in this bone tissue. The 55S/bone interfaces also were analyzed on transverse sections. The interfacial analysis showed a firm bone bonding to the 55S surface through an intervening apatite layer, confirmed by the X-ray mappings. All these results indicate the importance of the surface composition in supporting differentiation of osteogenic cells and the subsequent apposition of bone matrix allowing a strong bond of the bioactive materials to bone.
在本研究中,我们研究了在含55 wt%二氧化硅的生物活性玻璃(55S)以及以颗粒或圆盘形式使用的生物惰性玻璃(60S)上培养的胎鼠成骨细胞的行为。在存在生物玻璃颗粒(含55 wt%二氧化硅)的情况下,相差显微镜能够逐步观察到与颗粒接触处骨结节的形成。对未脱钙切片的超微结构观察显示,在材料周边存在由针状晶体组成的电子致密层,该层似乎作为生物晶体的成核表面。此外,能量色散X射线(EDX)分析和电子衍射图谱表明,该界面含有钙(Ca)和磷(P)且具有高度结晶性。当大鼠骨细胞在55S圆盘上培养时,扫描电子显微镜(SEM)观察显示,细胞附着、铺展于所有基质,并在培养第10天时形成多层结节状结构。此外,碱性磷酸酶(ALP)的细胞酶定位以及用骨唾液蛋白抗体进行的免疫标记显示,在55S上培养形成的骨结节呈阳性染色。另外,通过生化方法测定的55S培养物中ALP的比活性显著高于对照组。刮去细胞层后对材料表面的SEM观察表明,矿化的骨结节附着在55S表面,而不在60S表面。X射线微分析表明该骨组织中存在Ca和P。还对55S/骨界面的横切面进行了分析。界面分析显示,通过中间的磷灰石层,骨与55S表面牢固结合,X射线映射证实了这一点。所有这些结果表明,表面成分对于支持成骨细胞分化以及随后骨基质的附着至关重要,从而使生物活性材料与骨形成牢固结合。