Thallman R M, Bennett G L, Keele J W, Kappes S M
USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA.
J Anim Sci. 2001 Jan;79(1):34-44. doi: 10.2527/2001.79134x.
An algorithm for computing genotype probabilities for marker loci with many alleles in large, complex pedigrees with missing marker data is presented. The algorithm can also be used to calculate grandparental origin probabilities, which summarize the segregation pattern and are useful for mapping quantitative trait loci. The algorithm is iterative and is based on peeling on alleles instead of the traditional peeling on genotypes. This makes the algorithm more computationally efficient for loci with many alleles. The algorithm is approximate in pedigrees that contain loops, including loops generated by full sibs. The algorithm has no restrictions on pedigree structure or missing marker phenotypes, although together those factors affect the degree of approximation. In livestock pedigrees with dense marker data, the degree of approximation may be minimal. The algorithm can be used with an incomplete penetrance model for marker loci. Thus, it takes into account the possibility of marker scoring errors and helps to identify them. The algorithm provides a computationally feasible method to analyze genetic marker data in large, complex livestock pedigrees.
本文提出了一种用于计算大型复杂家系中具有多个等位基因的标记位点基因型概率的算法,其中存在缺失的标记数据。该算法还可用于计算祖父母起源概率,它总结了分离模式,对定位数量性状位点很有用。该算法是迭代的,基于对等位基因进行剥离,而不是传统的对基因型进行剥离。这使得该算法对于具有多个等位基因的位点在计算上更有效。在包含环的家系中,该算法是近似的,包括由全同胞产生的环。该算法对家系结构或缺失的标记表型没有限制,尽管这些因素共同影响近似程度。在具有密集标记数据的家畜家系中,近似程度可能最小。该算法可用于标记位点的不完全外显模型。因此,它考虑了标记评分错误的可能性并有助于识别这些错误。该算法提供了一种计算上可行的方法来分析大型复杂家畜家系中的遗传标记数据。