Suppr超能文献

在具有环的大型家系中对基因型进行采样。

Sampling genotypes in large pedigrees with loops.

作者信息

Fernández S A, Fernando R L, Guldbrandtsen B, Totir L R, Carriquiry A L

机构信息

Department of Animal Science, Iowa State University, 225 Kildee Hall, Ames, IA 50011, USA.

出版信息

Genet Sel Evol. 2001 Jul-Aug;33(4):337-67. doi: 10.1186/1297-9686-33-4-337.

Abstract

Markov chain Monte Carlo (MCMC) methods have been proposed to overcome computational problems in linkage and segregation analyses. This approach involves sampling genotypes at the marker and trait loci. Scalar-Gibbs is easy to implement, and it is widely used in genetics. However, the Markov chain that corresponds to scalar-Gibbs may not be irreducible when the marker locus has more than two alleles, and even when the chain is irreducible, mixing has been observed to be slow. These problems do not arise if the genotypes are sampled jointly from the entire pedigree. This paper proposes a method to jointly sample genotypes. The method combines the Elston-Stewart algorithm and iterative peeling, and is called the ESIP sampler. For a hypothetical pedigree, genotype probabilities are estimated from samples obtained using ESIP and also scalar-Gibbs. Approximate probabilities were also obtained by iterative peeling. Comparisons of these with exact genotypic probabilities obtained by the Elston-Stewart algorithm showed that ESIP and iterative peeling yielded genotypic probabilities that were very close to the exact values. Nevertheless, estimated probabilities from scalar-Gibbs with a chain of length 235 000, including a burn-in of 200 000 steps, were less accurate than probabilities estimated using ESIP with a chain of length 10 000, with a burn-in of 5 000 steps. The effective chain size (ECS) was estimated from the last 25 000 elements of the chain of length 125 000. For one of the ESIP samplers, the ECS ranged from 21 579 to 22 741, while for the scalar-Gibbs sampler, the ECS ranged from 64 to 671. Genotype probabilities were also estimated for a large real pedigree consisting of 3 223 individuals. For this pedigree, it is not feasible to obtain exact genotype probabilities by the Elston-Stewart algorithm. ESIP and iterative peeling yielded very similar results. However, results from scalar-Gibbs were less accurate.

摘要

马尔可夫链蒙特卡罗(MCMC)方法已被提出用于克服连锁分析和分离分析中的计算问题。这种方法涉及在标记位点和性状位点对基因型进行抽样。标量吉布斯抽样易于实现,且在遗传学中被广泛使用。然而,当标记位点有两个以上等位基因时,与标量吉布斯抽样相对应的马尔可夫链可能不是不可约的,并且即使该链是不可约的,也观察到混合速度较慢。如果从整个家系联合抽样基因型,这些问题就不会出现。本文提出了一种联合抽样基因型的方法。该方法结合了埃尔斯顿 - 斯图尔特算法和迭代剥离法,被称为ESIP抽样器。对于一个假设的家系,从使用ESIP和标量吉布斯抽样获得的样本中估计基因型概率。近似概率也通过迭代剥离法获得。将这些概率与通过埃尔斯顿 - 斯图尔特算法获得的精确基因型概率进行比较,结果表明ESIP和迭代剥离法产生的基因型概率非常接近精确值。然而,使用长度为235000的链(包括200000步的预烧期)的标量吉布斯抽样估计的概率,不如使用长度为10000的链(5000步的预烧期)的ESIP抽样估计的概率准确。有效链大小(ECS)是从长度为125000的链的最后25000个元素中估计出来的。对于其中一个ESIP抽样器,ECS范围为21579至22741,而对于标量吉布斯抽样器,ECS范围为64至671。还对一个由3223个个体组成的大型真实家系估计了基因型概率。对于这个家系,通过埃尔斯顿 - 斯图尔特算法获得精确基因型概率是不可行的。ESIP和迭代剥离法产生了非常相似的结果。然而,标量吉布斯抽样的结果不太准确。

相似文献

1
Sampling genotypes in large pedigrees with loops.在具有环的大型家系中对基因型进行采样。
Genet Sel Evol. 2001 Jul-Aug;33(4):337-67. doi: 10.1186/1297-9686-33-4-337.
5
A sampling algorithm for segregation analysis.一种用于分离分析的抽样算法。
Genet Sel Evol. 2001 Nov-Dec;33(6):587-603. doi: 10.1186/1297-9686-33-6-587.

引用本文的文献

6
Haplotyping methods for pedigrees.家系的单倍型分型方法。
Hum Hered. 2009;67(4):248-66. doi: 10.1159/000194978. Epub 2009 Jan 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验