Fernández Soledad A, Fernando Rohan L, Guldbrandtsen Bernt, Stricker Christian, Schelling Matthias, Carriquiry Alicia L
Department of Statistics, 317 Cockins Hall, Ohio State University, Columbus, OH 43210, USA.
Genet Sel Evol. 2002 Sep-Oct;34(5):537-55. doi: 10.1186/1297-9686-34-5-537.
Markov chain Monte Carlo (MCMC) methods have been proposed to overcome computational problems in linkage and segregation analyses. This approach involves sampling genotypes at the marker and trait loci. Among MCMC methods, scalar-Gibbs is the easiest to implement, and it is used in genetics. However, the Markov chain that corresponds to scalar-Gibbs may not be irreducible when the marker locus has more than two alleles, and even when the chain is irreducible, mixing has been observed to be slow. Joint sampling of genotypes has been proposed as a strategy to overcome these problems. An algorithm that combines the Elston-Stewart algorithm and iterative peeling (ESIP sampler) to sample genotypes jointly from the entire pedigree is used in this study. Here, it is shown that the ESIP sampler yields an irreducible Markov chain, regardless of the number of alleles at a locus. Further, results obtained by ESIP sampler are compared with other methods in the literature. Of the methods that are guaranteed to be irreducible, ESIP was the most efficient.
马尔可夫链蒙特卡罗(MCMC)方法已被提出用于克服连锁分析和分离分析中的计算问题。这种方法涉及在标记位点和性状位点对基因型进行抽样。在MCMC方法中,标量吉布斯方法是最容易实现的,并且它被应用于遗传学领域。然而,当标记位点有两个以上等位基因时,与标量吉布斯方法相对应的马尔可夫链可能不是不可约的,而且即使该链是不可约的,也观察到其混合速度很慢。联合抽样基因型已被提出作为克服这些问题的一种策略。本研究使用了一种将埃尔斯顿 - 斯图尔特算法和迭代剥离法相结合的算法(ESIP采样器),以便从整个家系中联合抽样基因型。在此表明,无论一个位点上等位基因的数量如何,ESIP采样器都会产生一个不可约的马尔可夫链。此外,将ESIP采样器得到的结果与文献中的其他方法进行了比较。在保证不可约的方法中,ESIP是最有效的。