Suppr超能文献

Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts.

作者信息

Galán B, Díaz E, García J L

机构信息

Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

出版信息

Environ Microbiol. 2000 Dec;2(6):687-94. doi: 10.1046/j.1462-2920.2000.00151.x.

Abstract

Biological desulphurization of petroleum feedstocks and products may offer an attractive alternative to reduce sulphur oxide emissions that cause serious environmental pollution. Dibenzothiophene (DBT) desulphurization via the Dsz pathway of Rhodococcus erythropolis IGTS8 is an energetically expensive process that consumes reducing equivalents. We have shown in this work that the HpaC oxidoreductase from Escherichia coli W is able to supply the required FMNH2 to the Dsz monooxygenases. The cloning and expression of the hpaC gene in Pseudomonas strains bearing the dszABC gene cluster significantly enhanced DBT desulphurization efficacy of the recombinant biocatalysts in a resting-cell process, thus indicating that overexpression of a heterologous flavin reductase in the host cell is critical for a high rate of sulphur removal in vivo. The hpaC and dszABC genes have been engineered as a single transcription unit under control of broadhost-range regulatory signals in a mobilizable DNA cassette that can be used to confer a DBT desulphurization phenotype to a wide variety of bacteria regardless of the expression of putative housekeeping flavin reductases within the host cells. This cassette will be very useful in exploring the biotechnological potential of novel biocatalysts for developing an efficient desulphurization process.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验