Suppr超能文献

一种用于体外鉴别幽门螺杆菌和其他胃食管分离株的智能快速气味识别模型。

An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro.

作者信息

Pavlou A K, Magan N, Sharp D, Brown J, Barr H, Turner A P

机构信息

Cranfield Biotechnology Centre, Cranfield University, Beds, UK.

出版信息

Biosens Bioelectron. 2000 Oct;15(7-8):333-42. doi: 10.1016/s0956-5663(99)00035-4.

Abstract

Two series of experiments are reported which result in the discrimination between Helicobacter pylori and other bacterial gastroesophageal isolates using a newly developed odour generating system, an electronic nose and a hybrid intelligent odour recognition system. In the first series of experiments, after 5 h of growth (37 degrees C), 53 volatile 'sniffs' were collected over the headspace of complex broth cultures of the following clinical isolates: Staphylococcus aureus, Klebsiella sp., H. pylori, Enterococcus faecalis (10(7) ml(-1)), Mixed infection (Proteus mirabilis, Escherichia coli, and E. faecalis 3 x 10(6) ml each) and sterile cultures. Fifty-six normalised variables were extracted from 14 conductive polymer sensor responses and analysed by a 3-layer back propagation neural network (NN). The NN prediction rate achieved was 98% and the test data (37.7% of all data) was recognised correctly. Successful clustering of bacterial classes was also achieved by discriminant analysis (DA) of a normalised subset of sensor data. Cross-validation identified correctly seven 'unknown' samples. In the second series of experiments after 150 min of microaerobic growth at 37 degrees C, 24 volatile samples were collected over the headspace of H. pylori cultures in enriched (HPP) and normal (HP) media and 11 samples over sterile (N) cultures. Forty-eight sensor parameters were extracted from 12 sensor responses and analysed by a 3-layer NN previously optimised by a genetic algorithm (GA). GA-NN analysis achieved a 94% prediction rate of 'unknown' data. Additionally the 'genetically' selected 16 input neurones were used to perform DA-cross validation that showed a clear clustering of three groups and reclassified correctly nine 'sniffs'. It is concluded that the most important factors that govern the performance of an intelligent bacterial odour detection system are: (a) an odour generation mechanism, (b) a rapid odour delivery system similar to the mammalian olfactory system, (c) a gas sensor array of high reproducibility and (d) a hybrid intelligent model (expert system) which will enable the parallel use of GA-NNs and multivariate techniques.

摘要

本文报道了两个系列的实验,这些实验使用新开发的气味生成系统、电子鼻和混合智能气味识别系统,实现了幽门螺杆菌与其他胃肠道细菌分离株之间的鉴别。在第一系列实验中,在37℃下培养5小时后,从以下临床分离株的复杂肉汤培养物的顶空中收集53种挥发性“气味”:金黄色葡萄球菌、克雷伯菌属、幽门螺杆菌、粪肠球菌(10⁷ ml⁻¹)、混合感染(奇异变形杆菌、大肠杆菌和粪肠球菌各3×10⁶ ml⁻¹)以及无菌培养物。从14个导电聚合物传感器响应中提取了56个归一化变量,并通过三层反向传播神经网络(NN)进行分析。所实现的神经网络预测率为98%,并且测试数据(占所有数据的37.7%)被正确识别。通过对传感器数据的归一化子集进行判别分析(DA),也成功实现了细菌类别的聚类。交叉验证正确识别了7个“未知”样本。在第二系列实验中,在37℃下微需氧培养150分钟后,从富集(HPP)和正常(HP)培养基中的幽门螺杆菌培养物的顶空中收集24个挥发性样本,从无菌(N)培养物的顶空中收集11个样本。从12个传感器响应中提取了48个传感器参数,并通过先前由遗传算法(GA)优化的三层神经网络进行分析。GA-NN分析对“未知”数据的预测率达到了94%。此外,“遗传”选择的16个输入神经元被用于进行DA交叉验证,结果显示三组明显聚类,并正确重新分类了9个“气味”。得出的结论是,影响智能细菌气味检测系统性能的最重要因素是:(a)气味生成机制,(b)类似于哺乳动物嗅觉系统的快速气味传递系统,(c)具有高重现性的气体传感器阵列,以及(d)能够并行使用GA-NN和多变量技术的混合智能模型(专家系统)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验