Ghafourifar P, Bringold U, Klein S D, Richter C
Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01545, USA.
Biol Signals Recept. 2001 Jan-Apr;10(1-2):57-65. doi: 10.1159/000046875.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.
一氧化氮(NO)通过与线粒体相互作用发挥广泛的生物学特性。通过与O₂竞争,生理相关浓度的NO可逆地抑制细胞色素氧化酶并降低O₂消耗,其方式类似于药理学上的竞争性拮抗作用。这种抑制作用通过例如调节ATP合成和线粒体跨膜电位(ΔΨ)的形成来调节许多细胞功能。NO调节产生NO的细胞和邻近细胞的氧消耗;因此,它可以作为呼吸的自动调节因子和旁分泌调节剂。另一方面,NO与超氧阴离子(O₂⁻) avidly反应生成强氧化剂过氧亚硝酸根(ONOO⁻),其主要以不可逆的方式影响线粒体功能。本文将讨论线粒体和细胞如何协调NO的可逆作用与ONOO⁻的不可逆作用。还将讨论线粒体NO合酶这一近期令人兴奋的发现。