Astor J C, Adami C
Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA.
Artif Life. 2000 Summer;6(3):189-218. doi: 10.1162/106454600568834.
We present a model of decentralized growth and development for artificial neural networks (ANNs), inspired by developmental biology and the physiology of nervous systems. In this model, each individual artificial neuron is an autonomous unit whose behavior is determined only by the genetic information it harbors and local concentrations of substrates. The chemicals and substrates, in turn, are modeled by a simple artificial chemistry. While the system is designed to allow for the evolution of complex networks, we demonstrate the power of the artificial chemistry by analyzing engineered (handwritten) genomes that lead to the growth of simple networks with behaviors known from physiology. To evolve more complex structures, a Java-based, platform-independent, asynchronous, distributed genetic algorithm (GA) has been implemented that allows users to participate in evolutionary experiments via the World Wide Web.
我们提出了一种受发育生物学和神经系统生理学启发的人工神经网络(ANN)分散式生长与发育模型。在这个模型中,每个单独的人工神经元都是一个自主单元,其行为仅由其所携带的遗传信息和底物的局部浓度决定。反过来,化学物质和底物则由一种简单的人工化学进行建模。虽然该系统旨在允许复杂网络的进化,但我们通过分析工程(手写)基因组来展示人工化学的力量,这些基因组能够促成具有生理学已知行为的简单网络的生长。为了进化出更复杂的结构,我们实现了一种基于Java的、与平台无关的、异步的、分布式遗传算法(GA),该算法允许用户通过万维网参与进化实验。