Shreesha Lakshwin, Levin Michael
UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France.
Allen Discovery Center, Tufts University, Medford, MA 02155, USA.
Entropy (Basel). 2023 Jan 9;25(1):131. doi: 10.3390/e25010131.
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
生物基因型并不直接编码表型;发育生理学是将基因组与通过选择确定的能力分隔开来的控制层。一个关键方面是细胞能力,因为细胞不是被动的物质,而是具有复杂的上下文敏感行为能力的单细胞生物的后代。为了探究不同程度的细胞能力对进化动力学的影响,我们在最小人工胚胎发生的背景下进行了进化模拟。虚拟胚胎由细胞“结构基因”提供的单一位置信息值轴组成,通过一个进化循环进行操作,其中胚胎的适应性与轴向梯度的单调性成正比。进化动力学以两种模式进行评估:硬连线发育(基因型直接编码表型),以及一种更现实的模式,即细胞在通过适应度函数评估之前进行相互作用(“调节性”发育)。我们发现,即使细胞在胚胎中改善其位置的能力很微小,也会导致进化搜索有更好的表现。至关重要的是,我们观察到,行为能力的提高会掩盖结构基因编码的原始适应性,选择更倾向于改善其发育问题解决能力,而不是改善其结构基因组。这表明存在一种强大的棘轮机制:进化逐渐锁定在其能动底物智能的改进上,而对结构基因组的压力则减小。这种反馈回路,即进化越来越多地将精力投入到发育软件而不是完善硬件上,解释了像涡虫这样的物种中基因组与解剖结构非常令人困惑的差异。此外,它确定了在进化时间内扩展智能的一个可能驱动因素,并提出了在计算机模拟和生物工程中设计新型系统的策略。