Suppr超能文献

恶臭假单胞菌降解间甲酚和对甲酚的途径。

Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.

作者信息

Hopper D J, Taylor D G

出版信息

J Bacteriol. 1975 Apr;122(1):1-6. doi: 10.1128/jb.122.1.1-6.1975.

Abstract

A comparison of the oxidation rates of various compounds by whole cells of Pseudomonas putida 3, 5 indicated that m-cresol is metabolized by oxidation to 3-hydroxybenzoate followed by hydroxylation to gentisate, the ring-fission substrate, when grown with 3, 5-xylenol. However, when m-cresol was the growth substrate, similar experiments suggested a different pathway involving a methyl-substituted catechol, and ring-fission by meta cleavage. Assays of ring-fission enzymes in cell-free extracts confirmed that different pathways are induced by the two growth substrates. 3, 5-Xylenol-grown cells contained high levels of gentisate oxygenase and only very small amounts of catechol oxygenase, whereas gentisate ocygenase could not be detected in m-cresol-grown cells, but levels of catechol oxygenase were greatly increased. Extracts of m-cresol-grown cells also contained 2-hydroxymuconic semialdehyde dehydrogenase and hydrolase, whose specificities enable them to metabolize the ring-fission products from catechol, 3-methylcatechol, and 4-methylcatechol. This catechol pathway is also used by m-cresol-grown cells for p-cresol metabolism. In contrast, the results for cells grown with p-cresol point to an alternative pathway involving oxidation to 4-hydroxybenzoate and hydrosylation to protocatechuate as ring-fission substrate. Extracts of these cells contained high levels of protocatechuate oxygenase and only small amounts of catechol oxygenase.

摘要

恶臭假单胞菌3、5的全细胞对各种化合物氧化速率的比较表明,当以3,5-二甲苯酚生长时,间甲酚通过氧化代谢为3-羟基苯甲酸,然后羟基化为龙胆酸(环裂解底物)。然而,当间甲酚作为生长底物时,类似的实验表明存在一条不同的途径,涉及一种甲基取代的儿茶酚,并通过间位裂解进行环裂解。对无细胞提取物中环裂解酶的测定证实,两种生长底物诱导了不同的途径。以3,5-二甲苯酚生长的细胞含有高水平的龙胆酸加氧酶,只有极少量的儿茶酚加氧酶,而在以间甲酚生长的细胞中未检测到龙胆酸加氧酶,但儿茶酚加氧酶的水平大大增加。以间甲酚生长的细胞提取物还含有2-羟基粘康酸半醛脱氢酶和水解酶,其特异性使它们能够代谢儿茶酚、3-甲基儿茶酚和4-甲基儿茶酚的环裂解产物。这条儿茶酚途径也被以间甲酚生长的细胞用于对甲酚的代谢。相比之下,以对甲酚生长的细胞的结果表明存在另一条途径,涉及氧化为4-羟基苯甲酸并羟基化为原儿茶酸作为环裂解底物。这些细胞的提取物含有高水平的原儿茶酸加氧酶,只有少量的儿茶酚加氧酶。

相似文献

1
Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
J Bacteriol. 1975 Apr;122(1):1-6. doi: 10.1128/jb.122.1.1-6.1975.
2
Metabolism of phenol and cresols by mutants of Pseudomonas putida.
J Bacteriol. 1973 Mar;113(3):1112-20. doi: 10.1128/jb.113.3.1112-1120.1973.
5
The metabolism of cresols by species of Pseudomonas.
Biochem J. 1966 Nov;101(2):293-301. doi: 10.1042/bj1010293.
7
Dissimilation of aromatic compounds by Alcaligenes eutrophus.
J Bacteriol. 1971 Aug;107(2):468-75. doi: 10.1128/jb.107.2.468-475.1971.
8
Metabolism of phenol and cresols by Bacillus stearothermophilus.
J Bacteriol. 1975 Dec;124(3):1077-83. doi: 10.1128/jb.124.3.1077-1083.1975.
9
Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways.
J Bacteriol. 1969 Nov;100(2):869-77. doi: 10.1128/jb.100.2.869-877.1969.
10
Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida.
J Bacteriol. 1974 Mar;117(3):1153-7. doi: 10.1128/jb.117.3.1153-1157.1974.

引用本文的文献

1
Integrated annotation prioritizes metabolites with bioactivity in inflammatory bowel disease.
Mol Syst Biol. 2024 Apr;20(4):338-361. doi: 10.1038/s44320-024-00027-8. Epub 2024 Mar 11.
3
Probiotic Bifidobacteria Mitigate the Deleterious Effects of -Cresol in a Drosophila melanogaster Toxicity Model.
mSphere. 2022 Dec 21;7(6):e0044622. doi: 10.1128/msphere.00446-22. Epub 2022 Nov 2.
4
PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres.
Environ Microbiol. 2021 Jun;23(6):2969-2991. doi: 10.1111/1462-2920.15509. Epub 2021 May 4.
5
Anaerobic biodegradation ofPara-cresol under three reducing conditions.
Microb Ecol. 1990 Dec;20(1):141-50. doi: 10.1007/BF02543873.
6
Biodegradation of p-cresol by Bacillus sp. strain PHN 1.
Curr Microbiol. 2006 Dec;53(6):529-33. doi: 10.1007/s00284-006-0309-x. Epub 2006 Nov 13.
7
Degradation of 4-Chlorophenol via the meta Cleavage Pathway by Comamonas testosteroni JH5.
Appl Environ Microbiol. 1997 Nov;63(11):4567-72. doi: 10.1128/aem.63.11.4567-4572.1997.
8
Metabolism of p-Cresol by the Fungus Aspergillus fumigatus.
Appl Environ Microbiol. 1993 Apr;59(4):1125-30. doi: 10.1128/aem.59.4.1125-1130.1993.
10
Biodegradation of phenols by the alga Ochromonas danica.
Appl Environ Microbiol. 1996 Apr;62(4):1265-73. doi: 10.1128/aem.62.4.1265-1273.1996.

本文引用的文献

1
Note on the sodium nitro-prusside reaction for acetone.
J Physiol. 1908 Dec 15;37(5-6):491-4. doi: 10.1113/jphysiol.1908.sp001285.
2
Metabolism of l-Malate and d-Malate by a Species of Pseudomonas.
J Bacteriol. 1970 Dec;104(3):1197-202. doi: 10.1128/jb.104.3.1197-1202.1970.
3
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
The yields of Streptococcus faecalis grown in continuous culture.
J Gen Microbiol. 1960 Jun;22:726-39. doi: 10.1099/00221287-22-3-726.
5
MECHANISM OF BETA-KETOADIPATE FORMATION BY BACTERIA.
Nature. 1964 Dec 26;204:1279-83. doi: 10.1038/2041279a0.
6
DEGRADATION OF THE BENZENE NUCLEUS BY BACTERIA.
Nature. 1964 May 23;202:775-8. doi: 10.1038/202775a0.
7
The metabolism of cresols by species of Pseudomonas.
Biochem J. 1966 Nov;101(2):293-301. doi: 10.1042/bj1010293.
8
Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways.
J Bacteriol. 1969 Nov;100(2):869-77. doi: 10.1128/jb.100.2.869-877.1969.
9
The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
Biochem J. 1971 Mar;122(1):29-40. doi: 10.1042/bj1220029.
10
Benzoate metabolism in Pseudomonas putida(arvilla) mt-2: demonstration of two benzoate pathways.
J Bacteriol. 1973 Jul;115(1):262-7. doi: 10.1128/jb.115.1.262-267.1973.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验