Suppr超能文献

竞争风险子分布的加权非参数最大似然估计

Weighted NPMLE for the Subdistribution of a Competing Risk.

作者信息

Bellach Anna, Kosorok Michael R, Rüschendorf Ludger, Fine Jason P

机构信息

Department of Biostatistics at University of Copenhagen.

Department of Biostatistics and Department of Statistics and Operations Research at University of North Carolina at Chapel Hill. These authors shared seniorauthorship.

出版信息

J Am Stat Assoc. 2019;114(525):259-270. doi: 10.1080/01621459.2017.1401540. Epub 2018 Jul 9.

Abstract

Direct regression modeling of the subdistribution has become popular for analyzing data with multiple, competing event types. All general approaches so far are based on non-likelihood based procedures and target covariate effects on the subdistribution. We introduce a novel weighted likelihood function that allows for a direct extension of the Fine-Gray model to a broad class of semiparametric regression models. The model accommodates time-dependent covariate effects on the subdistribution hazard. To motivate the proposed likelihood method, we derive standard nonparametric estimators and discuss a new interpretation based on pseudo risk sets. We establish consistency and asymptotic normality of the estimators and propose a sandwich estimator of the variance. In comprehensive simulation studies we demonstrate the solid performance of the weighted NPMLE in the presence of independent right censoring. We provide an application to a very large bone marrow transplant dataset, thereby illustrating its practical utility.

摘要

子分布的直接回归建模在分析具有多种竞争事件类型的数据时已变得很流行。到目前为止,所有通用方法都是基于非似然性程序,并针对子分布进行目标协变量效应分析。我们引入了一种新颖的加权似然函数,它允许将Fine-Gray模型直接扩展到一类广泛的半参数回归模型。该模型考虑了时间相依协变量对子分布风险的影响。为了推动所提出的似然方法,我们推导了标准非参数估计量,并基于伪风险集讨论了一种新的解释。我们建立了估计量的一致性和渐近正态性,并提出了方差的三明治估计量。在全面的模拟研究中,我们证明了在存在独立右删失的情况下加权非参数最大似然估计(weighted NPMLE)的稳健性能。我们提供了一个应用于非常大的骨髓移植数据集的案例,从而说明了它的实际效用。

相似文献

1
Weighted NPMLE for the Subdistribution of a Competing Risk.竞争风险子分布的加权非参数最大似然估计
J Am Stat Assoc. 2019;114(525):259-270. doi: 10.1080/01621459.2017.1401540. Epub 2018 Jul 9.
6
Penalized variable selection in competing risks regression.竞争风险回归中的惩罚变量选择
Lifetime Data Anal. 2017 Jul;23(3):353-376. doi: 10.1007/s10985-016-9362-3. Epub 2016 Mar 26.

引用本文的文献

1
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.
2
Postdischarge Mortality in a Cohort Hospitalized With Anorexia Nervosa.神经性厌食症住院队列的出院后死亡率
Int J Eat Disord. 2024 Dec;57(12):2482-2486. doi: 10.1002/eat.24296. Epub 2024 Sep 26.

本文引用的文献

4
Competing risk regression models for epidemiologic data.用于流行病学数据的竞争风险回归模型。
Am J Epidemiol. 2009 Jul 15;170(2):244-56. doi: 10.1093/aje/kwp107. Epub 2009 Jun 3.
8
Regression modeling of competing crude failure probabilities.竞争性粗失败概率的回归建模。
Biostatistics. 2001 Mar;2(1):85-97. doi: 10.1093/biostatistics/2.1.85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验