Bellach Anna, Kosorok Michael R, Rüschendorf Ludger, Fine Jason P
Department of Biostatistics at University of Copenhagen.
Department of Biostatistics and Department of Statistics and Operations Research at University of North Carolina at Chapel Hill. These authors shared seniorauthorship.
J Am Stat Assoc. 2019;114(525):259-270. doi: 10.1080/01621459.2017.1401540. Epub 2018 Jul 9.
Direct regression modeling of the subdistribution has become popular for analyzing data with multiple, competing event types. All general approaches so far are based on non-likelihood based procedures and target covariate effects on the subdistribution. We introduce a novel weighted likelihood function that allows for a direct extension of the Fine-Gray model to a broad class of semiparametric regression models. The model accommodates time-dependent covariate effects on the subdistribution hazard. To motivate the proposed likelihood method, we derive standard nonparametric estimators and discuss a new interpretation based on pseudo risk sets. We establish consistency and asymptotic normality of the estimators and propose a sandwich estimator of the variance. In comprehensive simulation studies we demonstrate the solid performance of the weighted NPMLE in the presence of independent right censoring. We provide an application to a very large bone marrow transplant dataset, thereby illustrating its practical utility.
子分布的直接回归建模在分析具有多种竞争事件类型的数据时已变得很流行。到目前为止,所有通用方法都是基于非似然性程序,并针对子分布进行目标协变量效应分析。我们引入了一种新颖的加权似然函数,它允许将Fine-Gray模型直接扩展到一类广泛的半参数回归模型。该模型考虑了时间相依协变量对子分布风险的影响。为了推动所提出的似然方法,我们推导了标准非参数估计量,并基于伪风险集讨论了一种新的解释。我们建立了估计量的一致性和渐近正态性,并提出了方差的三明治估计量。在全面的模拟研究中,我们证明了在存在独立右删失的情况下加权非参数最大似然估计(weighted NPMLE)的稳健性能。我们提供了一个应用于非常大的骨髓移植数据集的案例,从而说明了它的实际效用。