Chang Yen, Ivanova Anastasia, Albanes Demetrius, Fine Jason P, Shin Yei Eun
Department of Biostatistics, University of North Carolina, 135 Dauer Drive, Chapel Hill,North Carolina 27599, USA.
Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics,National Cancer Institute, 9609 Medical Center Drive, Rockville, Maryland 20892, USA.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae032.
The standard approach to regression modeling for cause-specific hazards with prospective competing risks data specifies separate models for each failure type. An alternative proposed by Lunn and McNeil (1995) assumes the cause-specific hazards are proportional across causes. This may be more efficient than the standard approach, and allows the comparison of covariate effects across causes. In this paper, we extend Lunn and McNeil (1995) to nested case-control studies, accommodating scenarios with additional matching and non-proportionality. We also consider the case where data for different causes are obtained from different studies conducted in the same cohort. It is demonstrated that while only modest gains in efficiency are possible in full cohort analyses, substantial gains may be attained in nested case-control analyses for failure types that are relatively rare. Extensive simulation studies are conducted and real data analyses are provided using the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) study.
对于具有前瞻性竞争风险数据的特定病因风险进行回归建模的标准方法,是为每种失败类型指定单独的模型。Lunn和McNeil(1995)提出的一种替代方法假设特定病因风险在不同病因之间成比例。这可能比标准方法更有效,并且允许比较不同病因的协变量效应。在本文中,我们将Lunn和McNeil(1995)的方法扩展到巢式病例对照研究,以适应具有额外匹配和不成比例性的情况。我们还考虑了不同病因的数据来自同一队列中进行的不同研究的情况。结果表明,虽然在全队列分析中效率提升可能不大,但对于相对罕见的失败类型,在巢式病例对照分析中可能会有显著的效率提升。我们进行了广泛的模拟研究,并使用前列腺、肺、结肠和卵巢癌筛查试验(PLCO)研究提供了实际数据分析。