Trappenberg T P, Dorris M C, Munoz D P, Klein R M
University of Oxford, UK.
J Cogn Neurosci. 2001 Feb 15;13(2):256-71. doi: 10.1162/089892901564306.
Significant advances in cognitive neuroscience can be achieved by combining techniques used to measure behavior and brain activity with neural modeling. Here we apply this approach to the initiation of rapid eye movements (saccades), which are used to redirect the visual axis to targets of interest. It is well known that the superior colliculus (SC) in the midbrain plays a major role in generating saccadic eye movements, and physiological studies have provided important knowledge of the activity pattern of neurons in this structure. Based on the observation that the SC receives localized sensory (exogenous) and voluntary (endogenous) inputs, our model assumes that this information is integrated by dynamic competition across local collicular interactions. The model accounts well for the effects upon saccadic reaction time (SRT) due to removal of fixation, the presence of distractors, execution of pro- versus antisaccades, and variation in target probability, and suggests a possible mechanism for the generation of express saccades. In each of these cases, the activity patterns of "neurons" within the model closely resemble actual cell behavior in the intermediate layer of the SC. The interaction structure we employ is instrumental for producing a physiologically faithful model and results in new insights and hypotheses regarding the neural mechanisms underlying saccade initiation.
将用于测量行为和大脑活动的技术与神经建模相结合,能够在认知神经科学领域取得重大进展。在此,我们将这种方法应用于快速眼动(扫视)的启动过程,扫视用于将视轴重新指向感兴趣的目标。众所周知,中脑的上丘在产生眼球扫视运动中起主要作用,生理学研究为该结构中神经元的活动模式提供了重要知识。基于上丘接收局部感觉(外源性)和自主(内源性)输入的观察结果,我们的模型假设这些信息通过局部丘系相互作用之间的动态竞争进行整合。该模型很好地解释了由于去除注视、存在干扰物、执行正扫视与反扫视以及目标概率变化对扫视反应时间(SRT)的影响,并提出了产生快速扫视的可能机制。在上述每种情况下,模型内“神经元”的活动模式与上丘中间层的实际细胞行为极为相似。我们采用的相互作用结构有助于生成一个生理上逼真的模型,并为扫视启动的神经机制带来新的见解和假设。