Tragni Vincenzo, Preziusi Francesca, Laera Luna, Onofrio Angelo, Mercurio Ivan, Todisco Simona, Volpicella Mariateresa, De Grassi Anna, Pierri Ciro Leonardo
Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy.
Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10-85100 Potenza, Italy.
EPMA J. 2022 Jan 6;13(1):149-175. doi: 10.1007/s13167-021-00267-w. eCollection 2022 Mar.
The rapid spread of new SARS-CoV-2 variants has highlighted the crucial role played in the infection by mutations occurring at the SARS-CoV-2 spike receptor binding domain (RBD) in the interactions with the human ACE2 receptor. In this context, it urgently needs to develop new rapid tools for quickly predicting the affinity of ACE2 for the SARS-CoV-2 spike RBD protein variants to be used with the ongoing SARS-CoV-2 genomic sequencing activities in the clinics, aiming to gain clues about the transmissibility and virulence of new variants, to prevent new outbreaks and to quickly estimate the severity of the disease in the context of the 3PM.
In our study, we used a computational pipeline for calculating the interaction energies at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface for a selected group of characterized infectious variants of concern/interest (VoC/VoI). By using our pipeline, we built 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for the VoC B.1.1.7-United Kingdom (carrying the mutations of concern/interest N501Y, S494P, E484K at the RBD), P.1-Japan/Brazil (RBD mutations: K417T, E484K, N501Y), B.1.351-South Africa (RBD mutations: K417N, E484K, N501Y), B.1.427/B.1.429-California (RBD mutations: L452R), the B.1.141 (RBD mutations: N439K), and the recent B.1.617.1-India (RBD mutations: L452R; E484Q) and the B.1.620 (RBD mutations: S477N; E484K). Then, we used the obtained 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for predicting the interaction energies at the protein-protein interface.
Along SARS-CoV-2 mutation database screening and mutation localization analysis, it was ascertained that the most dangerous mutations at VoC/VoI spike proteins are located mainly at three regions of the SARS-CoV-2 spike "boat-shaped" receptor binding motif, on the RBD domain. Notably, the P.1 Japan/Brazil variant present three mutations, K417T, E484K, N501Y, located along the entire receptor binding motif, which apparently determines the highest interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface, among those calculated. Conversely, it was also observed that the replacement of a single acidic/hydrophilic residue with a basic residue (E484K or N439K) at the "stern" or "bow" regions, of the boat-shaped receptor binding motif on the RBD, appears to determine an interaction energy with ACE2 receptor higher than that observed with single mutations occurring at the "hull" region or with other multiple mutants. In addition, our pipeline allowed searching for ACE2 structurally related proteins, i.e., THOP1 and NLN, which deserve to be investigated for their possible involvement in interactions with the SARS-CoV-2 spike protein, in those tissues showing a low expression of ACE2, or as a novel receptor for future spike variants. A freely available web-tool for the in silico calculation of the interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface, starting from the sequences of the investigated spike and/or ACE2 variants, was made available for the scientific community at: https://www.mitoairm.it/covid19affinities.
In the context of the PPPM/3PM, the employment of the described pipeline through the provided webservice, together with the ongoing SARS-CoV-2 genomic sequencing, would help to predict the transmissibility of new variants sequenced from future patients, depending on SARS-CoV-2 genomic sequencing activities and on the specific amino acid replacement and/or on its location on the SARS-CoV-2 spike RBD, to put in play all the possible counteractions for preventing the most deleterious scenarios of new outbreaks, taking into consideration that a greater transmissibility has not to be necessarily related to a more severe manifestation of the disease.
The online version contains supplementary material available at 10.1007/s13167-021-00267-w.
新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体的迅速传播凸显了SARS-CoV-2刺突受体结合域(RBD)发生的突变在与人类血管紧张素转换酶2(ACE2)受体相互作用中的感染过程中所起的关键作用。在此背景下,迫切需要开发新的快速工具,以便快速预测ACE2对SARS-CoV-2刺突RBD蛋白变体的亲和力,用于临床正在进行的SARS-CoV-2基因组测序活动,旨在获取有关新变体的传播性和毒力的线索,预防新的疫情爆发,并在疫情监测计划(3PM)的背景下快速评估疾病的严重程度。
在我们的研究中,我们使用了一个计算流程来计算一组选定的具有特征的关注/感兴趣的传染性变体(VoC/VoI)在SARS-CoV-2刺突RBD/ACE2蛋白质-蛋白质界面的相互作用能。通过使用我们的流程,我们构建了SARS-CoV-2刺突RBD/ACE2蛋白质复合物的三维比较模型,用于关注变体B.1.1.7-英国(RBD携带关注/感兴趣的突变N501Y、S494P、E484K)、P.1-日本/巴西(RBD突变:K417T、E484K、N501Y)、B.1.351-南非(RBD突变:K417N、E484K、N501Y)、B.1.427/B.1.429-加利福尼亚(RBD突变:L452R)、B.1.141(RBD突变:N439K)以及最近的B.1.617.1-印度(RBD突变:L452R;E484Q)和B.1.620(RBD突变:S477N;E484K)。然后,我们使用获得的SARS-CoV-2刺突RBD/ACE2蛋白质复合物的三维比较模型来预测蛋白质-蛋白质界面的相互作用能。
通过对SARS-CoV-2突变数据库的筛选和突变定位分析,确定了VoC/VoI刺突蛋白中最危险的突变主要位于SARS-CoV-2刺突“船形”受体结合基序的三个区域,即RBD结构域上。值得注意的是,P.1日本/巴西变体在整个受体结合基序上存在三个突变,K417T、E484K、N501Y,在所计算的变体中,这显然决定了SARS-CoV-2刺突RBD/ACE2蛋白质-蛋白质界面的最高相互作用能。相反,还观察到在RBD上船形受体结合基序的“船尾”或“船头”区域,用碱性残基(E484K或N439K)取代单个酸性/亲水性残基,似乎决定了与ACE2受体的相互作用能高于在“船体”区域发生的单突变或其他多个突变体所观察到的相互作用能。此外,我们的流程允许搜索与ACE2结构相关的蛋白质,即THOP1和NLN,在那些ACE2表达较低的组织中,或者作为未来刺突变体的新型受体,它们可能参与与SARS-CoV-2刺突蛋白的相互作用,值得研究。一个免费的网络工具已可供科学界使用,可根据所研究的刺突和/或ACE2变体的序列,在计算机上计算SARS-CoV-2刺突RBD/ACE2蛋白质-蛋白质界面的相互作用能,网址为:https://www.mitoairm.it/covid19affinities。
在疫情监测计划(PPPM/3PM)的背景下,通过提供的网络服务使用所描述的流程,结合正在进行的SARS-CoV-2基因组测序,将有助于根据SARS-CoV-2基因组测序活动、特定的氨基酸替换和/或其在SARS-CoV-2刺突RBD上的位置,预测未来患者测序的新变体的传播性,采取所有可能的应对措施以防止新疫情爆发的最有害情况,同时考虑到更高的传播性不一定与更严重的疾病表现相关。
在线版本包含可在10.1007/s13167-021-00267-w获取的补充材料。