Müller E C, Lapko A, Otto A, Müller J J, Ruckpaul K, Heinemann U
Max-Delbrück-Centrum für Molekulare Medizin, Germany.
Eur J Biochem. 2001 Mar;268(6):1837-43.
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin -P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin-P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system.
NADPH依赖的肾上腺皮质铁氧化还原蛋白还原酶、肾上腺皮质铁氧化还原蛋白以及多种不同的细胞色素P450构成了脊椎动物的线粒体类固醇羟化酶系统。在反应循环中,肾上腺皮质铁氧化还原蛋白将电子从肾上腺皮质铁氧化还原蛋白还原酶的FAD转移至具有催化活性的细胞色素P450(P450scc)的血红素铁上。为了解释从肾上腺皮质铁氧化还原蛋白还原酶到P450的电子转移,人们讨论了肾上腺皮质铁氧化还原蛋白的穿梭模型或所有三个组分的有序簇模型。在此,我们分别表征了由1-乙基-3-(3-二甲基氨基丙基)碳二亚胺介导的牛肾上腺皮质铁氧化还原蛋白与肾上腺皮质铁氧化还原蛋白还原酶之间以及肾上腺皮质铁氧化还原蛋白与P450scc之间新的共价、零长度交联,这使得能够区分电子转移模型。通过埃德曼降解、质谱分析和X射线晶体学检测到肾上腺皮质铁氧化还原蛋白还原酶的Lys27与肾上腺皮质铁氧化还原蛋白的Asp39之间存在交联,在两个分子之间建立了一个二级极性相互作用位点。在肾上腺皮质铁氧化还原蛋白酸性残基Asp76至Asp79周围的一级极性相互作用位点不存在交联。然而,在肾上腺皮质铁氧化还原蛋白与P450scc的共价复合物中,肾上腺皮质铁氧化还原蛋白的Asp79参与了与P450scc的Lys403的交联。在肾上腺皮质铁氧化还原蛋白 - P450scc复合物/肾上腺皮质铁氧化还原蛋白还原酶测试系统中未检测到类固醇生成羟化酶活性。由于酸性残基Asp76和Asp79属于肾上腺皮质铁氧化还原蛋白与肾上腺皮质铁氧化还原蛋白还原酶以及与P450scc的结合位点,肾上腺皮质铁氧化还原蛋白 - P450scc复合物内的共价键通过推定的穿梭机制阻止了电子转移。因此,化学交联为类固醇羟化酶系统的穿梭模型优于簇模型提供了证据。