Suppr超能文献

具有不完全协变量和辅助信息的多变量逻辑回归。

Multivariate logistic regression with incomplete covariate and auxiliary information.

作者信息

Sinha Sanjoy K, Laird Nan M, Fitzmaurice Garrett M

机构信息

School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada

出版信息

J Multivar Anal. 2010 Nov 1;101(10):2389-2397. doi: 10.1016/j.jmva.2010.06.010.

Abstract

In this article, we propose and explore a multivariate logistic regression model for analyzing multiple binary outcomes with incomplete covariate data where auxiliary information is available. The auxiliary data are extraneous to the regression model of interest but predictive of the covariate with missing data. describe how the auxiliary information can be incorporated into a regression model for a single binary outcome with missing covariates, and hence the efficiency of the regression estimators can be improved. We consider extending the method of Horton and Laird (2001) to the case of a multivariate logistic regression model for multiple correlated outcomes, and with missing covariates and completely observed auxiliary information. We demonstrate that in the case of moderate to strong associations among the multiple outcomes, one can achieve considerable gains in efficiency from estimators in a multivariate model as compared to the marginal estimators of the same parameters.

摘要

在本文中,我们提出并探讨一种多元逻辑回归模型,用于分析具有不完全协变量数据且有辅助信息可用的多个二元结局。辅助数据与感兴趣的回归模型无关,但可预测存在缺失数据的协变量。描述了如何将辅助信息纳入具有缺失协变量的单个二元结局的回归模型中,从而提高回归估计量的效率。我们考虑将霍顿和莱尔德(2001年)的方法扩展到多个相关结局、存在缺失协变量且有完全观测到的辅助信息的多元逻辑回归模型的情形。我们证明,在多个结局之间存在中度到强关联的情况下,与相同参数的边际估计量相比,多元模型中的估计量在效率上可实现显著提升。

相似文献

1
Multivariate logistic regression with incomplete covariate and auxiliary information.
J Multivar Anal. 2010 Nov 1;101(10):2389-2397. doi: 10.1016/j.jmva.2010.06.010.
3
Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data.
Biometrics. 2017 Sep;73(3):1042-1052. doi: 10.1111/biom.12657. Epub 2017 Jan 23.
4
Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information.
Stat Methods Med Res. 2017 Apr;26(2):691-706. doi: 10.1177/0962280214556175. Epub 2014 Oct 26.
5
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.
6
Adjustment for missingness using auxiliary information in semiparametric regression.
Biometrics. 2010 Mar;66(1):115-22. doi: 10.1111/j.1541-0420.2009.01231.x. Epub 2009 May 7.
7
Multivariate Failure Times Regression with a Continuous Auxiliary Covariate.
J Multivar Anal. 2010 Mar 1;101(3):679-691. doi: 10.1016/j.jmva.2009.09.008.
9
Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable.
Biom J. 2020 Mar;62(2):467-478. doi: 10.1002/bimj.201900011. Epub 2019 Jul 15.
10
Outcome-dependent sampling for longitudinal binary response data based on a time-varying auxiliary variable.
Stat Med. 2012 Sep 28;31(22):2441-56. doi: 10.1002/sim.4359. Epub 2011 Nov 16.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验