Sinha Sanjoy K, Laird Nan M, Fitzmaurice Garrett M
School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
J Multivar Anal. 2010 Nov 1;101(10):2389-2397. doi: 10.1016/j.jmva.2010.06.010.
In this article, we propose and explore a multivariate logistic regression model for analyzing multiple binary outcomes with incomplete covariate data where auxiliary information is available. The auxiliary data are extraneous to the regression model of interest but predictive of the covariate with missing data. describe how the auxiliary information can be incorporated into a regression model for a single binary outcome with missing covariates, and hence the efficiency of the regression estimators can be improved. We consider extending the method of Horton and Laird (2001) to the case of a multivariate logistic regression model for multiple correlated outcomes, and with missing covariates and completely observed auxiliary information. We demonstrate that in the case of moderate to strong associations among the multiple outcomes, one can achieve considerable gains in efficiency from estimators in a multivariate model as compared to the marginal estimators of the same parameters.
在本文中,我们提出并探讨一种多元逻辑回归模型,用于分析具有不完全协变量数据且有辅助信息可用的多个二元结局。辅助数据与感兴趣的回归模型无关,但可预测存在缺失数据的协变量。描述了如何将辅助信息纳入具有缺失协变量的单个二元结局的回归模型中,从而提高回归估计量的效率。我们考虑将霍顿和莱尔德(2001年)的方法扩展到多个相关结局、存在缺失协变量且有完全观测到的辅助信息的多元逻辑回归模型的情形。我们证明,在多个结局之间存在中度到强关联的情况下,与相同参数的边际估计量相比,多元模型中的估计量在效率上可实现显著提升。