Andrés E, Askebjer P, Bai X, Barouch G, Barwick S W, Bay R C, Becker K H, Bergström L, Bertrand D, Bierenbaum D, Biron A, Booth J, Botner O, Bouchta A, Boyce M M, Carius S, Chen A, Chirkin D, Conrad J, Cooley J, Costa C G, Cowen D F, Dailing J, Dalberg E, DeYoung T, Desiati P, Dewulf J P, Doksus P, Edsjö J, Ekström P, Erlandsson B, Feser T, Gaug M, Goldschmidt A, Goobar A, Gray L, Haase H, Hallgren A, Halzen F, Hanson K, Hardtke R, He Y D, Hellwig M, Heukenkamp H, Hill G C, Hulth P O, Hundertmark S, Jacobsen J, Kandhadai V, Karle A, Kim J, Koci B, Köpke L, Kowalski M, Leich H, Leuthold M, Lindahl P, Liubarsky I, Loaiza P, Lowder D M, Ludvig J, Madsen J, Marciniewski P, Matis H S, Mihalyi A, Mikolajski T, Miller T C, Minaeva Y, Miocinović P, Mock P C, Morse R, Neunhöffer T, Newcomer F M, Niessen P, Nygren D R, Ogelman H, Pérez de los Heros C, Porrata R, Price P B, Rawlins K, Reed C, Rhode W, Richards A, Richter S, Martino J R, Romenesko P, Ross D, Rubinstein H, Sander H G, Scheider T, Schmidt T, Schneider D, Schneider E, Schwarz R, Silvestri A, Solarz M, Spiczak G M, Spiering C, Starinsky N, Steele D, Steffen P, Stokstad R G, Streicher O, Sun Q, Taboada I, Thollander L, Thon T, Tilav S, Usechak N, Vander Donckt M, Walck C, Weinheimer C, Wiebusch C H, Wischnewski R, Wissing H, Woschnagg K, Wu W, Yodh G, Young S
Department of Physics, University of Wisconsin, Wisconsin, Madison 53706, USA.
Nature. 2001 Mar 22;410(6827):441-3. doi: 10.1038/35068509.
Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water or ice. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations.
中微子是不带电荷且质量极小的基本粒子。由于它们与其他粒子的相互作用非常微弱,所以能够穿透大量物质,因而有潜力直接传递来自宇宙边缘以及最剧烈的高能区域深处的天体物理信息。然而,中微子强大的穿透能力也使得这种粒子难以被探测到。地下探测器已经观测到来自太阳和附近一颗超新星的低能中微子,以及在地球大气层中产生的中微子。但是,来自宇宙源的高能中微子通量极低,只有在例如深水中或冰层中使用大得多的可扩展探测器才能观测到。在此,我们报告基于冰层的南极μ子与中微子探测器阵列(AMANDA)探测到向上传播的大气中微子。这些结果确立了一种技术,利用该技术可以建造一个千米级的中微子天文台,这对于天体物理观测是必不可少的。