Tujebajeva R M, Copeland P R, Xu X M, Carlson B A, Harney J W, Driscoll D M, Hatfield D L, Berry M J
Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
EMBO Rep. 2000 Aug;1(2):158-63. doi: 10.1093/embo-reports/kvd033.
Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3' untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms. We have identified and characterized the first eukaryotic selenocysteyl-tRNA-specific elongation factor. This factor forms a complex with mammalian SECIS binding protein 2, and these two components function together in selenocysteine incorporation in mammalian cells. Expression of the two functional domains of the bacterial elongation factor-SECIS binding protein as two separate proteins in eukaryotes suggests a mechanism for rapid exchange of charged for uncharged selenocysteyl-tRNA-elongation factor complex, allowing a single SECIS element to serve multiple UGA codons.
将UGA解码为硒代半胱氨酸需要一种独特的tRNA、一种特殊的延伸因子以及mRNA中特定的二级结构,即硒代半胱氨酸插入序列(SECIS)元件。真核生物的SECIS元件存在于硒蛋白mRNA的3'非翻译区,而原核生物中的SECIS元件则位于UGA的紧邻下游。因此,单个真核生物SECIS元件可以服务多个UGA密码子,而原核生物的SECIS元件仅对相邻的UGA起作用,这表明两个王国中重新编码的机制不同。我们已经鉴定并表征了首个真核生物硒代半胱氨酰-tRNA特异性延伸因子。该因子与哺乳动物SECIS结合蛋白2形成复合物,并且这两个组分在哺乳动物细胞的硒代半胱氨酸掺入过程中共同发挥作用。细菌延伸因子-SECIS结合蛋白的两个功能域在真核生物中作为两种单独的蛋白质表达,这提示了一种机制,即带电的与不带电的硒代半胱氨酰-tRNA-延伸因子复合物能够快速交换,从而使单个SECIS元件能够服务多个UGA密码子。