Suppr超能文献

翻译终止、硒代半胱氨酸密码子上下文与硒代半胱氨酸插入序列结合蛋白2之间相互作用的功能分析

Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2.

作者信息

Gupta Malavika, Copeland Paul R

机构信息

Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2007 Dec 21;282(51):36797-807. doi: 10.1074/jbc.M707061200. Epub 2007 Oct 22.

Abstract

A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.

摘要

3'-非翻译区中的硒代半胱氨酸插入序列(SECIS)元件和读码框内的UGA密码子是将硒代半胱氨酸掺入硒蛋白所需的顺式作用元件。同样重要的是反式作用因子SBP2、Sec-tRNA[Ser]Sec和eEFSec。多个读码框内的UGA和两个SECIS元件使得编码硒蛋白P(Sel P)的mRNA独具特色。为了研究密码子上下文在确定10个大鼠Sel P Sec密码子中每个密码子UGA通读效率方面的作用,我们将代表每个UGA密码子上下文的27个核苷酸长的片段分别克隆到一个携带两个Sel P SECIS元件的荧光素酶报告构建体中。观察到UGA通读效率存在显著差异,范围跨度达8倍,但在存在过量SBP2的情况下,这些差异显著减小。对上下文1和5的“第四个碱基”进行突变分析表明,只有后者遵循既定的翻译终止层次规则。此外,Sel P SECIS元件中的一个或两个发生突变会对UGA通读产生不同影响。有趣的是,即使两个SECIS元件都含有掺入Sec所需的核心区域突变,上下文5的通读水平仍显著高于上下文1。我们还表明,依赖SBP2的Sec掺入能够抑制G418诱导的UGA通读以及eRF1诱导的终止刺激。我们得出结论,大的密码子上下文形成一个顺式元件,它与Sec掺入因子共同作用来确定通读效率。

相似文献

2
Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
RNA Biol. 2014;11(11):1402-13. doi: 10.1080/15476286.2014.996472.
3
A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec.
RNA. 2007 Jun;13(6):912-20. doi: 10.1261/rna.473907. Epub 2007 Apr 24.
4
Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.
J Biol Chem. 2014 Sep 5;289(36):25317-26. doi: 10.1074/jbc.M114.590430. Epub 2014 Jul 25.
5
Decoding apparatus for eukaryotic selenocysteine insertion.
EMBO Rep. 2000 Aug;1(2):158-63. doi: 10.1093/embo-reports/kvd033.
6
Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity.
RNA Biol. 2019 Dec;16(12):1682-1696. doi: 10.1080/15476286.2019.1653681. Epub 2019 Aug 21.
7
Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
Nat Struct Mol Biol. 2005 May;12(5):408-16. doi: 10.1038/nsmb922. Epub 2005 Apr 10.
8
Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis.
J Mol Biol. 2001 Jul 20;310(4):699-707. doi: 10.1006/jmbi.2001.4809.
9
The selenocysteine-specific elongation factor contains a novel and multi-functional domain.
J Biol Chem. 2012 Nov 9;287(46):38936-45. doi: 10.1074/jbc.M112.415463. Epub 2012 Sep 19.

引用本文的文献

2
Ribosome Fate during Decoding of UGA-Sec Codons.
Int J Mol Sci. 2021 Dec 8;22(24):13204. doi: 10.3390/ijms222413204.
4
Processive incorporation of multiple selenocysteine residues is driven by a novel feature of the selenocysteine insertion sequence.
J Biol Chem. 2018 Dec 14;293(50):19377-19386. doi: 10.1074/jbc.RA118.005211. Epub 2018 Oct 15.
5
6
Molecular mechanism of selenoprotein P synthesis.
Biochim Biophys Acta Gen Subj. 2018 Nov;1862(11):2506-2510. doi: 10.1016/j.bbagen.2018.04.011. Epub 2018 Apr 12.
7
Selenocysteine incorporation: A trump card in the game of mRNA decay.
Biochimie. 2015 Jul;114:97-101. doi: 10.1016/j.biochi.2015.01.007. Epub 2015 Jan 23.
8
Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.
J Biol Chem. 2014 Sep 5;289(36):25317-26. doi: 10.1074/jbc.M114.590430. Epub 2014 Jul 25.
9
Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells.
PLoS One. 2011;6(5):e20073. doi: 10.1371/journal.pone.0020073. Epub 2011 May 13.
10
Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities.
Antioxid Redox Signal. 2011 Oct 1;15(7):1957-97. doi: 10.1089/ars.2010.3586. Epub 2011 Apr 10.

本文引用的文献

2
A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec.
RNA. 2007 Jun;13(6):912-20. doi: 10.1261/rna.473907. Epub 2007 Apr 24.
5
Size matters: a view of selenocysteine incorporation from the ribosome.
Cell Mol Life Sci. 2006 Jan;63(1):73-81. doi: 10.1007/s00018-005-5402-y.
6
Transterm--extended search facilities and improved integration with other databases.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D37-40. doi: 10.1093/nar/gkj159.
7
Aminoglycosides decrease glutathione peroxidase-1 activity by interfering with selenocysteine incorporation.
J Biol Chem. 2006 Feb 10;281(6):3382-8. doi: 10.1074/jbc.M511295200. Epub 2005 Dec 14.
9
Knowing when not to stop.
Nat Struct Mol Biol. 2005 May;12(5):389-90. doi: 10.1038/nsmb0505-389.
10
Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
Nat Struct Mol Biol. 2005 May;12(5):408-16. doi: 10.1038/nsmb922. Epub 2005 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验