Bony C, Roche S, Shuichi U, Sasaki T, Crackower M A, Penninger J, Mano H, Pucéat M
The French Institute of Health and Medical Research, CNRS UPR1086 Montpellier 34293, France.
J Cell Biol. 2001 Feb 19;152(4):717-28. doi: 10.1083/jcb.152.4.717.
Purinergic stimulation of cardiomyocytes turns on a Src family tyrosine kinase-dependent pathway that stimulates PLCgamma and generates IP(3), a breakdown product of phosphatidylinositol 4,5-bisphosphate (PIP2). This signaling pathway closely regulates cardiac cell autonomic activity (i.e., spontaneous cell Ca(2+) spiking). PIP2 is phosphorylated on 3' by phosphoinositide 3-kinases (PI3Ks) that belong to a broad family of kinase isoforms. The product of PI3K, phosphatidylinositol 3,4,5-trisphosphate, regulates activity of PLCgamma. PI3Ks have emerged as crucial regulators of many cell functions including cell division, cell migration, cell secretion, and, via PLCgamma, Ca(2+) homeostasis. However, although PI3Kalpha and -beta have been shown to mediate specific cell functions in nonhematopoietic cells, such a role has not been found yet for PI3Kgamma. We report that neonatal rat cardiac cells in culture express PI3Kalpha, -beta, and -gamma. The purinergic agonist predominantly activates PI3Kgamma. Both wortmannin and LY294002 prevent tyrosine phosphorylation, and membrane translocation of PLCgamma as well as IP(3) generation in ATP-stimulated cells. Furthermore, an anti-PI3Kgamma, but not an anti-PI3Kbeta, injected in the cells prevents the effect of ATP on cell Ca(2+) spiking. A dominant negative mutant of PI3Kgamma transfected in the cells also exerts the same action. The effect of ATP was observed on spontaneous Ca(2+) spiking of wild-type but not of PI3Kgamma(2/2) embryonic stem cell-derived cardiomyocytes. ATP activates the Btk tyrosine kinase, Tec, and induces its association with PLCgamma. A dominant negative mutant of Tec blocks the purinergic effect on cell Ca(2+) spiking. Tec is translocated to the T-tubes upon ATP stimulation of cardiac cells. Both an anti-PI3Kgamma antibody and a dominant negative mutant of PI3Kgamma injected or transfected into cells prevent the latter event. We conclude that PI3Kgamma activation is a crucial step in the purinergic regulation of cardiac cell spontaneous Ca(2+) spiking. Our data further suggest that Tec works in concert with a Src family kinase and PI3Kgamma to fully activate PLCgamma in ATP-stimulated cardiac cells. This cluster of kinases provides the cardiomyocyte with a tight regulation of IP(3) generation and thus cardiac autonomic activity.
心肌细胞的嘌呤能刺激开启了一条依赖Src家族酪氨酸激酶的信号通路,该通路刺激磷脂酶Cγ(PLCγ)并生成肌醇三磷酸(IP3),它是磷脂酰肌醇4,5-二磷酸(PIP2)的分解产物。这条信号通路密切调节心脏细胞的自主活动(即细胞自发的钙离子尖峰)。PIP2在3'位被磷脂酰肌醇3激酶(PI3K)磷酸化,PI3K属于一个广泛的激酶同工型家族。PI3K的产物磷脂酰肌醇3,4,5-三磷酸调节PLCγ的活性。PI3K已成为许多细胞功能的关键调节因子,包括细胞分裂、细胞迁移、细胞分泌,并且通过PLCγ调节钙离子稳态。然而,尽管PI3Kα和-β已被证明在非造血细胞中介导特定的细胞功能,但尚未发现PI3Kγ有这样的作用。我们报道,培养的新生大鼠心脏细胞表达PI3Kα、-β和-γ。嘌呤能激动剂主要激活PI3Kγ。渥曼青霉素和LY294002都能阻止ATP刺激的细胞中PLCγ的酪氨酸磷酸化、膜转位以及IP3的生成。此外,向细胞内注射抗PI3Kγ抗体而非抗PI3Kβ抗体,可阻止ATP对细胞钙离子尖峰的影响。转染到细胞中的PI3Kγ显性负突变体也有同样的作用。在野生型而非PI3Kγ(2/2)胚胎干细胞来源的心肌细胞的自发钙离子尖峰上观察到了ATP的作用。ATP激活Btk酪氨酸激酶Tec,并诱导其与PLCγ结合。Tec的显性负突变体阻断了嘌呤能对细胞钙离子尖峰的影响。在心脏细胞受到ATP刺激时,Tec会转位到T小管。向细胞内注射或转染抗PI3Kγ抗体和PI3Kγ显性负突变体均可阻止后一事件的发生。我们得出结论,PI3Kγ的激活是嘌呤能调节心脏细胞自发钙离子尖峰的关键步骤。我们的数据进一步表明,Tec与Src家族激酶和PI3Kγ协同作用,在ATP刺激的心脏细胞中充分激活PLCγ。这一组激酶为心肌细胞提供了对IP3生成从而对心脏自主活动的严格调节。