Chakrabarti S, Oppermann M, Gintzler A R
Department of Biochemistry, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4209-14. doi: 10.1073/pnas.071031798.
Traditional mechanisms thought to underlie opioid tolerance include receptor phosphorylation/down-regulation, G-protein uncoupling, and adenylyl cyclase superactivation. A parallel line of investigation also indicates that opioid tolerance development results from a switch from predominantly opioid receptor G(i alpha) inhibitory to G(beta gamma) stimulatory signaling. As described previously, this results, in part, from the increased relative abundance of G(beta gamma)-stimulated adenylyl cyclase isoforms as well as from a profound increase in their phosphorylation [Chakrabarti, S., Rivera, M., Yan, S.-Z., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 655-662; Chakrabarti, S., Wang, L., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 949--953]. The present study demonstrates that chronic morphine administration results in the concomitant phosphorylation of three key signaling proteins, G protein receptor kinase (GRK) 2/3, beta-arrestin, and G(beta), in the guinea pig longitudinal muscle myenteric plexus tissue. Augmented phosphorylation of all three proteins is evident in immunoprecipitate obtained by using either anti-GRK2/3 or G(beta) antibodies, but the phosphorylation increment is greater in immunoprecipitate obtained with G(beta) antibodies. Analyses of coimmunoprecipitated proteins indicate that phosphorylation of GRK2/3, beta-arrestin, and G(beta) has varying consequences on their ability to associate. As a result, increased availability of and signaling via G(beta gamma) could occur without compromising the membrane content (and presumably activity) of GRK2/3. Induction of the concomitant phosphorylation of multiple proteins in a multimolecular complex with attendant modulation of their association represents a novel mechanism for increasing G(beta gamma) signaling and opioid tolerance formation.
传统上认为导致阿片类药物耐受性的机制包括受体磷酸化/下调、G蛋白解偶联以及腺苷酸环化酶超激活。另一系列的研究还表明,阿片类药物耐受性的产生是由于信号传导从主要由阿片受体G(iα)抑制性信号向G(βγ)刺激性信号的转变。如前所述,这部分是由于G(βγ)刺激的腺苷酸环化酶同工型相对丰度增加以及它们磷酸化的显著增加所致[Chakrabarti, S., Rivera, M., Yan, S.-Z., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 655 - 662; Chakrabarti, S., Wang, L., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 949 - 953]。本研究表明,慢性吗啡给药导致豚鼠纵行肌肌间神经丛组织中三种关键信号蛋白,即G蛋白受体激酶(GRK)2/3、β-抑制蛋白和G(β)的伴随磷酸化。使用抗GRK2/3或G(β)抗体获得的免疫沉淀物中,所有三种蛋白的磷酸化增强均明显可见,但用G(β)抗体获得的免疫沉淀物中磷酸化增加幅度更大。对共免疫沉淀蛋白的分析表明,GRK2/3、β-抑制蛋白和G(β)的磷酸化对它们结合能力有不同影响。结果,在不影响GRK2/3膜含量(以及推测的活性)的情况下,可能会增加G(βγ)的可用性并通过其进行信号传导。多分子复合物中多种蛋白伴随磷酸化的诱导及其结合的伴随调节代表了一种增加G(βγ)信号传导和形成阿片类药物耐受性的新机制。