Wallace D C
Center for Molecular Medicine, Emory University, 1462 Clifton Road, Suite 420, Atlanta, GA 30322, USA.
Novartis Found Symp. 2001;235:247-63; discussion 263-6. doi: 10.1002/0470868694.ch20.
A variety of degenerative diseases have now been shown to be caused by mutations in mitochondrial genes encoded by the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). The mitochondria generate most of the cellular energy by oxidative phosphorylation (OXPHOS), and produce most of the toxic reactive oxygen species (ROS) as a by-product. Genetic defects that inhibit OXPHOS also cause the redirection of OXPHOS electrons into ROS production, thus increasing oxidative stress. A decline in mitochondrial energy production and an increase in oxidative stress can impinge on the mitochondrial permeability transition pore (mtPTP) to initiate programmed cell death (apoptosis). The interaction of these three factors appear to play a major role on the pathophysiology of degenerative diseases. Inherited diseases can result from mtDNA base substitution and rearrangement mutations and can affect the CNS, heart and skeletal muscle, and renal, endocrine and haematological systems. In addition, somatic mtDNA mutations accumulate with age in post-mitotic tissues in association with the age-related decline in mitochondrial function and are thought to be an important factor in ageing and senescence. The importance of mitochondrial defects in degenerative diseases and ageing has been demonstrated using mouse models of mitochondrial disease. An mtDNA mutation imparting chloramphenical resistance (CAPR) to mitochondrial protein synthesis has been transferred into mice and resulted in growth retardation and cardiomyopathy. A nDNA mutation which inactivates the heart-muscle isoform of the adenine nucleotide translocator (Ant1) results in mitochondrial myopathy and cardiomyopathy; induction of ROS production; the compensatory up-regulation of energy, antioxidant, and apoptosis gene expression; and an increase in the mtDNA somatic mutation rate. Finally, a nDNA mutation which inactivates the mitochondrial Mn superoxide dismutase (MnSOD) results in death in about 8 days due to dilated cardiomyopathy, which can be ameliorated by treatment with catalytic anti-oxidants. A partial MnSOD deficiency chronically increases oxidative stress, decreases OXPHOS function, and stimulates apoptosis. Thus, the decline of mitochondrial energy production resulting in increased oxidative stress and apoptosis does play a significant role in degenerative diseases and ageing.
现已表明,多种退行性疾病是由线粒体DNA(mtDNA)或核DNA(nDNA)编码的线粒体基因突变引起的。线粒体通过氧化磷酸化(OXPHOS)产生大部分细胞能量,并产生大部分有毒的活性氧(ROS)作为副产品。抑制OXPHOS的遗传缺陷也会导致OXPHOS电子重新导向ROS生成,从而增加氧化应激。线粒体能量产生的下降和氧化应激的增加会影响线粒体通透性转换孔(mtPTP),从而引发程序性细胞死亡(凋亡)。这三个因素的相互作用似乎在退行性疾病的病理生理学中起主要作用。遗传性疾病可由mtDNA碱基替换和重排突变引起,可影响中枢神经系统、心脏和骨骼肌以及肾脏、内分泌和血液系统。此外,体细胞mtDNA突变在有丝分裂后组织中随年龄积累,与线粒体功能的年龄相关性下降有关,被认为是衰老和老化的重要因素。利用线粒体疾病的小鼠模型已经证明了线粒体缺陷在退行性疾病和衰老中的重要性。赋予线粒体蛋白合成氯霉素抗性(CAPR)的mtDNA突变已被转入小鼠体内,导致生长迟缓和心肌病。使腺嘌呤核苷酸转位酶(Ant1)的心肌亚型失活的nDNA突变导致线粒体肌病和心肌病;诱导ROS产生;能量、抗氧化剂和凋亡基因表达的代偿性上调;以及mtDNA体细胞突变率的增加。最后,使线粒体锰超氧化物歧化酶(MnSOD)失活的nDNA突变会导致扩张型心肌病,约8天内死亡,用催化抗氧化剂治疗可改善这种情况。部分MnSOD缺乏会长期增加氧化应激,降低OXPHOS功能,并刺激细胞凋亡。因此,线粒体能量产生的下降导致氧化应激和细胞凋亡增加,确实在退行性疾病和衰老中起重要作用。