Suppr超能文献

线粒体疾病的动物模型。

Animal models for mitochondrial disease.

作者信息

Wallace Douglas C

机构信息

Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

Methods Mol Biol. 2002;197:3-54. doi: 10.1385/1-59259-284-8:003.

Abstract

Mutations in mitochondrial genes encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA have been implicated in a wide range of degenerative diseases. MtDNA base substitution and rearrangement mutations can cause myopathy, cardiomyopathy, ophthalmological defects, growth retardation, movement disorders, dementias, and diabetes. nDNA mutations can affect mtDNA replication and transcription, increase mtDNA mutations through defects in the adenine nucleotide translocator isoform 1 (ANT1), or cause Leigh's syndrome, as a result of defects in oxidative phosphorylation (OXPHOS) structural genes. Mouse models of mtDNA base substitution mutations have been created by introducing the mtDNA 16S rRNA chloramphenicol (CAP)-resistance mutation into the mouse female germline. This resulted in ophthalmological defects in chimeras and perinatal lethality resulting from myopathy and cardiomyopathy in mutant animals. Mouse models of mtDNA rearrangements have resulted in animals with myopathy, cardiomyopathy, and nephropathy. Conditional inactivation of the mouse nDNA mitochondrial transcription factor (Tfam) gene in the heart caused neonatal lethal cardiomyopathy, whereas its inactivation in the pancreatic beta-cells caused diabetes. Mutational inactivation of the mouse Ant1 gene resulted in myopathy, cardiomyopathy, and multiple mtDNA deletions in association with elevated reactive oxygen species (ROS) production. This suggests that multiple mtDNA deletion syndrome can be caused by increased ROS damage. The inactivation of the uncoupler protein genes (Ucp) 1-3 resulted in alterations in delta mu H+ and increased ROS production. Inactivation of the Ucp2 gene, which is expressed in the pancreatic beta-cells, resulted in increased islet ATP, increased serum insulin levels, and suppression of the diabetes of the ob/ob mouse genotype. Transgenic mice with altered beta-cell ATP-sensitive K+ channels (KATP) also developed diabetes. Mutational inactivation of the mitochondrial antioxidant genes for glutathione peroxidase (GPx1) and Mn superoxide dismutase (Sod2) caused reduced energy production and neonatal lethal dilated cardiomyopathy, respectively, the later being ameliorated by treatment with MnSOD mimics. Partial Sod2 deficiency (+/-) resulted in mice with increased mitochondrial damage during aging, and treatment of C. elegans with catalytic antioxidant drugs can extend their life-span. Mice deficient in cytochrome-c died early in embryogenesis, but cells derived from these embryos had a complete deficiency in mitochondrial apoptosis. Mice lacking the proapoptotic Bax and Bak genes were not able to release cytochrome-c from the mitochondrion and were blocked in apoptosis. Mice lacking Apaf1, Cas9, and Cas3 did release mitochondrial cytochrome-c and were blocked in the downstream steps of apoptosis. These animal studies confirm that alterations in mitochondrial energy generation, ROS production, and apoptosis can all contribute to the pathophysiology of mitochondrial disease.

摘要

线粒体DNA(mtDNA)和核DNA(nDNA)编码的线粒体基因突变与多种退行性疾病有关。mtDNA碱基置换和重排突变可导致肌病、心肌病、眼科缺陷、生长发育迟缓、运动障碍、痴呆和糖尿病。nDNA突变可影响mtDNA复制和转录,通过腺嘌呤核苷酸转位酶同工型1(ANT1)缺陷增加mtDNA突变,或因氧化磷酸化(OXPHOS)结构基因缺陷导致 Leigh 综合征。通过将mtDNA 16S rRNA氯霉素(CAP)抗性突变引入小鼠雌性生殖系,已创建了mtDNA碱基置换突变的小鼠模型。这导致嵌合体出现眼科缺陷,突变动物因肌病和心肌病出现围产期致死。mtDNA重排的小鼠模型导致动物出现肌病、心肌病和肾病。小鼠心脏中nDNA线粒体转录因子(Tfam)基因的条件性失活导致新生儿致死性心肌病,而其在胰腺β细胞中的失活导致糖尿病。小鼠Ant1基因的突变失活导致肌病、心肌病和多个mtDNA缺失,并伴有活性氧(ROS)生成增加。这表明多个mtDNA缺失综合征可能由ROS损伤增加引起。解偶联蛋白基因(Ucp)1 - 3的失活导致ΔμH+改变和ROS生成增加。在胰腺β细胞中表达的Ucp2基因失活导致胰岛ATP增加、血清胰岛素水平升高,并抑制ob/ob小鼠基因型的糖尿病。β细胞ATP敏感性钾通道(KATP)改变的转基因小鼠也发生了糖尿病。线粒体抗氧化基因谷胱甘肽过氧化物酶(GPx1)和锰超氧化物歧化酶(Sod2)的突变失活分别导致能量产生减少和新生儿致死性扩张型心肌病,后者通过用锰超氧化物歧化酶模拟物治疗得到改善。部分Sod2缺陷(+/-)导致衰老过程中线粒体损伤增加的小鼠,用催化抗氧化药物治疗秀丽隐杆线虫可延长其寿命。细胞色素c缺陷的小鼠在胚胎发育早期死亡,但来自这些胚胎的细胞线粒体凋亡完全缺陷。缺乏促凋亡Bax和Bak基因的小鼠无法从线粒体释放细胞色素c,凋亡受阻。缺乏Apaf1、Cas9和Cas3的小鼠确实释放了线粒体细胞色素c,并在凋亡的下游步骤受阻。这些动物研究证实,线粒体能量产生、ROS生成和凋亡的改变都可能导致线粒体疾病的病理生理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验