Suppr超能文献

PhiHSIC病毒与其宿主的相互作用:溶原性还是假溶原性?

Interaction of the PhiHSIC virus with its host: lysogeny or pseudolysogeny?

作者信息

Williamson S J, McLaughlin M R, Paul J H

机构信息

College of Marine Science, University of South Florida, 140 7th Avenue S., St. Petersburg, FL 33701, USA.

出版信息

Appl Environ Microbiol. 2001 Apr;67(4):1682-8. doi: 10.1128/AEM.67.4.1682-1688.2001.

Abstract

The marine phage PhiHSIC has been previously reported to enter into a lysogenic relationship with its host, HSIC, identified as Listonella pelagia. This phage produces a variety of plaques on its host, including turbid and haloed plaques, from which lysogens were previously isolated. These lysogens were unstable during long-term storage at -80( degrees ) C and were lost. When HSIC was reinfected with phage PhiHSIC, pseudolysogen-like interactions between the phage and its host were observed. The cells (termed HSIC-2 or HSIC-2e) produced high viral titers (10(11) ml(-1)) in the absence of inoculating phage and yet reached culture densities of nearly 10(9) ml(-1). Prophages were not induced by mitomycin C or the polyaromatic hydrocarbon naphthalene in cells harboring such infections. However, such cells were homoimmune to superinfection. Colonies hybridized strongly with a gene probe from a 100-bp fragment of the PhiHSIC genome, while the host did not. Analysis of chromosomal DNA preparations suggested the presence of a chromosomally integrated prophage. Phage adsorption experiments suggested that HSIC-2 was adsorption impaired. Because of the chromosomal prophage integration and homoimmunity, we interpret these results to indicate that PhiHSIC establishes a lysogenic relationship with its host that involves an extremely high level of spontaneous induction. This could be caused by a weak repressor of phage production. Additionally, poor phage adsorption of HSIC-2 compared to the wild type probably helped maintain this pseudolysogen-like relationship. In many ways, pseudolysogenic phage-host interactions may provide a paradigm for phage-host interactions in the marine environment.

摘要

先前有报道称,海洋噬菌体PhiHSIC与其宿主HSIC(被鉴定为佩氏弧菌)建立了溶原性关系。这种噬菌体在其宿主上产生多种噬菌斑,包括浑浊噬菌斑和晕环噬菌斑,之前已从这些噬菌斑中分离出溶原菌。这些溶原菌在-80℃长期保存时不稳定并丢失。当HSIC再次被噬菌体PhiHSIC感染时,观察到噬菌体与其宿主之间存在类似假溶原菌的相互作用。这些细胞(称为HSIC-2或HSIC-2e)在未接种噬菌体的情况下产生了高病毒滴度(10¹¹ ml⁻¹),但培养密度仍接近10⁹ ml⁻¹。在感染此类细胞的情况下,丝裂霉素C或多环芳烃萘不会诱导原噬菌体。然而,此类细胞对超感染具有同源免疫性。菌落与来自PhiHSIC基因组100 bp片段的基因探针强烈杂交,而宿主则没有。染色体DNA制备物分析表明存在染色体整合的原噬菌体。噬菌体吸附实验表明HSIC-2的吸附受损。由于染色体原噬菌体整合和同源免疫性,我们将这些结果解释为表明PhiHSIC与其宿主建立了溶原性关系,其中涉及极高水平的自发诱导。这可能是由噬菌体产生的弱阻遏物引起的。此外,与野生型相比,HSIC-2的噬菌体吸附性较差可能有助于维持这种类似假溶原菌的关系。在许多方面,假溶原性噬菌体-宿主相互作用可能为海洋环境中的噬菌体-宿主相互作用提供了一个范例。

相似文献

1
Interaction of the PhiHSIC virus with its host: lysogeny or pseudolysogeny?
Appl Environ Microbiol. 2001 Apr;67(4):1682-8. doi: 10.1128/AEM.67.4.1682-1688.2001.
3
Complete genome sequence of phiHSIC, a pseudotemperate marine phage of Listonella pelagia.
Appl Environ Microbiol. 2005 Jun;71(6):3311-20. doi: 10.1128/AEM.71.6.3311-3320.2005.
4
The cycle for a Siphoviridae-like phage (VHS1) of Vibrio harveyi is dependent on the physiological state of the host.
Virus Res. 2008 Aug;135(2):332-5. doi: 10.1016/j.virusres.2008.03.011. Epub 2008 Apr 29.
5
Unstable lysogeny and pseudolysogeny in Vibrio harveyi siphovirus-like phage 1.
Appl Environ Microbiol. 2006 Feb;72(2):1355-63. doi: 10.1128/AEM.72.2.1355-1363.2006.
6
Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii.
Appl Environ Microbiol. 1998 Feb;64(2):535-42. doi: 10.1128/AEM.64.2.535-542.1998.
7
Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico.
Appl Environ Microbiol. 2010 Feb;76(3):829-42. doi: 10.1128/AEM.01710-09. Epub 2009 Dec 11.
8
Induction of multiple prophages from a marine bacterium: a genomic approach.
Appl Environ Microbiol. 2006 Jul;72(7):4995-5001. doi: 10.1128/AEM.00056-06.
9
Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
mBio. 2024 Feb 14;15(2):e0326023. doi: 10.1128/mbio.03260-23. Epub 2024 Jan 18.

引用本文的文献

1
Prophages block cell surface receptors to preserve their viral progeny.
Nature. 2025 Jul 16. doi: 10.1038/s41586-025-09260-z.
3
The metastable associations of bacteriophages and Erwinia amylovora.
Arch Microbiol. 2023 May 2;205(5):214. doi: 10.1007/s00203-023-03550-8.
4
A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions.
Microbiol Spectr. 2022 Oct 26;10(5):e0236722. doi: 10.1128/spectrum.02367-22. Epub 2022 Oct 3.
5
The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway.
Front Microbiol. 2022 Aug 19;13:918015. doi: 10.3389/fmicb.2022.918015. eCollection 2022.
6
Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage.
Mol Oral Microbiol. 2023 Feb;38(1):58-70. doi: 10.1111/omi.12378. Epub 2022 Jul 25.
7
The Complicated and Confusing Ecology of Blooms.
mBio. 2020 Jun 30;11(3):e00529-20. doi: 10.1128/mBio.00529-20.
9
Viral Regulation on Bacterial Community Impacted by Lysis-Lysogeny Switch: A Microcosm Experiment in Eutrophic Coastal Waters.
Front Microbiol. 2019 Jul 31;10:1763. doi: 10.3389/fmicb.2019.01763. eCollection 2019.
10
Host-hijacking and planktonic piracy: how phages command the microbial high seas.
Virol J. 2019 Feb 1;16(1):15. doi: 10.1186/s12985-019-1120-1.

本文引用的文献

1
The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment.
Microbiology (Reading). 1997 Jun;143(6):2065-2070. doi: 10.1099/00221287-143-6-2065.
2
Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the gulf of Mexico.
Appl Environ Microbiol. 1996 Dec;62(12):4374-80. doi: 10.1128/aem.62.12.4374-4380.1996.
3
Use of hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria.
Appl Environ Microbiol. 1982 Apr;43(4):939-44. doi: 10.1128/aem.43.4.939-944.1982.
4
Virioplankton: viruses in aquatic ecosystems.
Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114. doi: 10.1128/MMBR.64.1.69-114.2000.
5
Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa.
Microbiology (Reading). 1998 Aug;144 ( Pt 8):2225-2232. doi: 10.1099/00221287-144-8-2225.
6
Gene transfer by transduction in the marine environment.
Appl Environ Microbiol. 1998 Aug;64(8):2780-7. doi: 10.1128/AEM.64.8.2780-2787.1998.
7
Seasonal abundance of lysogenic bacteria in a subtropical estuary.
Appl Environ Microbiol. 1998 Jun;64(6):2308-12. doi: 10.1128/AEM.64.6.2308-2312.1998.
9
Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii.
Appl Environ Microbiol. 1998 Feb;64(2):535-42. doi: 10.1128/AEM.64.2.535-542.1998.
10
Viral spread within ageing bacterial populations.
Gene. 1997 Nov 20;202(1-2):147-9. doi: 10.1016/s0378-1119(97)00467-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验